首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
常压下以内循环无梯度反应器研究了B108铁基中温变换催化剂上水煤气变换反应宏观动力学。测定了反应速率,并用马夸特非线性参数估值法获得了幂函数宏观动力学模型r_s=37.67exp(-43982/RT)y_(CO)~(0.7552)y_(H_2O)~(-0.0367)Y_(CO_2)~(-0.4874)y_(H_2)(1-β)根据方差分析和残差分析,证实模型是高度显著的。由实验数据计算出相应反应条件下的效率因子。内扩散对原粒度B108催化剂上的反应具有严重影响。模型用于工业变换炉催化剂的用量核算,模型值与实际值符合良好。  相似文献   

2.
本文在常压下用直流管式等温积分反应器研究了C301型铜基催化剂上CO-H_2-CH_3OH 系统中甲醇分解反应本征动力学。在不同温度和组成的情况下测定了甲醇分解的速率。用非线性最小二乘法对幂函数型甲醇分解反应本征动力学模型进行了参数估值,得到甲醇分解的动力学方程为:R_m=-(dN_m)/(dW)m=0.3202×10~(10)exp(-(26610)/(R_gT))p_(H_2)~(-0.25)p_(CO)~(-0.25)p_m~(0.5)mol/(g·hr)由甲醇分解反应的活化能求得合成反应的活化能为14990 cal/mol。  相似文献   

3.
本文提出一种在循环反应器中研究反应动力学的动态方法。反应物注入连续流动的循环反应器中,使反应在产物流中进行,从流出物组成的浓度变化计算动力学参数。用本方法研究了甲醇在铜基催化剂上的分解动力学。结果表明,分解动力学参数与在同一装置上用稳态法得到的甲醇合成动力学参数是一致的。其分解速率方程式为r=kp_(H_2)~(?)p_(CO)~(?)p_mk=1.86×10~(?)exp(-30500/RT)  相似文献   

4.
本动力学研究是在流动加压微反-色谱装置中进行。反应条件是:反应温度390—420℃,压力0.3—1.6MPa,液体空速20—100h~(-1),氢和环己烷的分子比是8:1,反应器内装入粒度为40—60目的催化剂0.102g,反应结果出色谱微处理机处理。环己烷脱氢动力学模型是L-H双位活性中心机理模型,反应的初速度方程式为r_0=(k_aK_c(P_c~0)~2)/([1 K_c(P_c~0)~2 K_H~(1/3)p_H~0]~2)k_a=1.2384×10~7exp(-11100/T)(mol/g·h)K_c=7.3178×10~(-4)exp(8534.776/T)(MPa~(-2))并得出反应活化能E=91.90(KJ/mol) 环己烷吸附热Q=70.66(KJ/mol)  相似文献   

5.
高碘酸盐氧化硫脲的非线性动力学行为和机理   总被引:5,自引:0,他引:5  
在酸性介质中,高碘酸盐氧化硫脲的非线性反应呈现多种不同的化学计量方程 式。当[KIO_4]_0/[SC(NH_2)_2]_0 > 4时,计量方程为4IO_4~- + SC(NH_2)_2 + 3H_2O = 4IO_3~- + SO_4~(2-) + CO_3~(2-) + 2H~+ + 2NH_4~+;当[KIO_4]_0/ [SC(NH_2)_2]_0 = 8:7时,计量方程为8IO_4~- + 7SC(NH_2)_2 + 17H_2O = 4I_2 + 7SO_4~(2-) + 7CO_3~(2-) + 6H~+ + 14NH_4~+;而当[KIO_4]_0/[SC(NH_2)_2] _0 < 1时,反应的主要计量方程为IO_4~- + 4SC(NH_2)_2 + 8H_2O = I~- + 4S + 4CO_3~(2-) + 8NH_4~+。同时反应体系在氧化剂过量的条件下碘钟产生的诱导期 与1/[H~+]~2成正比;而当还原剂过量时,体系I_2逐渐累积至极值的诱导期与体系 初始pH呈线性关系。运用包含质子平衡反应、碘化合物自身反应、碘化合物-硫化 合物反应以及硫-硫反应的15步反应机理较好地模拟出封闭体系中pH,[I~-]以及 [I_2]的准振荡行为。  相似文献   

6.
以微球活性炭为载体的钯—铜催化剂常温氧化CO活性与配位体关系的研究表明,H_2O在CO氧化中起溶剂并参加络合物配位和供CO氧化所需氧的作用。氧离子的存在是必要的。NO_3~-对该反应有促进作用。对该反应的宏观动力学研究得出,反应速率仅与CO的浓度有关。用紫外和红外光谱研究表明,OH~-、CO、H_2O、Cl~-、NO_3~-参加了Pd~(++)络合物配位,生成反应中间络合物。在上述研究的基础上,提出了该初始反应机理的模型为 [PdCl_4]~(2-)+OH~-→[PdCl_3(OH)]~(2-)+Cl~- (Ⅰ) (Ⅰ) +CO→[PdCl_2(OH)CO]~-+Cl~- (Ⅱ) (Ⅲ)→Pd+HCl+Cl~-+CO_2+H_2O  相似文献   

7.
中温变换B_(110-2)型催化剂宏观动力学研究   总被引:2,自引:0,他引:2  
本文采用内循环无梯度反应器,测定了常压下工业粒度B_(110-2)型变换催化剂宏观动力学速率。动力学测试条件如下:催化床温度330—450℃,反应气体组成(干基)CO摩尔分率0.1—0.35,CO_2摩尔分率0—0.35,汽气比0.3—1.0。用非线性最小二乘法对幂函数型宏观动力学方程进行参数估值,确定了相应的模型参数。所获得的六参数和简化四参数宏观动力学方程具有良好的等效性,其结果如下: 六参数宏观动力学方程为简化的四参数宏观动力学方程为  相似文献   

8.
含氢原子簇化合物H_2Os_3(CO)_(10)与乙炔反应生成顺式加成物[Os_3H(μ,η~2-CH=CH_2)(CO)_(10)]。本文首次报道高含量氘代原子簇D_2Os_3(CO)_(10)与乙炔反应生成合乙烯配位基的氘代原子簇[Os_3D(μ,η~2-CH=CHD)(CO)_(10)],H_2Os_3(CO)_(10)与氘代乙炔反应生成[Os_3H(μ,η~2-CD=CDH)(CO)_(10)],它们在微量亲核试剂吡啶作用下发生μ,η~2-乙烯配位基的顺反异构反应。本文用同位素氘代和~1H,~2H NMR动态波谱联用方法,研究了上述反应和异构化过程,提出了顺反异构化的核磁共振动态波谱证据、反应机理和动力学数据。  相似文献   

9.
锰和铼的阳离子卡宾配合物[π-C_5H_5(CO)_2MnCC_6H_5]~ SbCl_6~-(1)和[π-C_5H_5(CO)_2ReCC_6H_5]~ -BCl_4~-(2)分别与1-萘硒基锂,LiSeC_(10)H_7-1反应,生成锰和铼的萘硒基卡宾配合物[π-C_5H_5(CO)_2-MnC(C_6H_5)(SeC_(10)H_7-1)(3)和[π-C_5H_5(CO)_2ReC(C_6H_5)(SeC_(10)H_7-1)(4)及铼的烷基卡宾配合物[π-C_5H_5(CO)_2ReC(C_6H_5)(n-C_4H_9)(5).这些新卡宾配合物均经元素分析,IR,~1HNMR 和 MS 鉴定.  相似文献   

10.
采用活塞流管式积分反应器,在1.0 MPa压力下,对环境友好铁系无铬NBC-1型高温变换催化剂上变换反应本征动力学数据进行了测试。根据测定得到的数据,对幂函数动力学模型进行了模型参数估计和模型检验,得到了高度显著的动力学回归方程。从动力学方程可以得出:该高温变换催化剂上变换反应活化能比较低,因此其低温活性较好;该催化剂上H2O组分对反应速率的影响比较大;CO2对变换反应速率的抑制作用很大,因此为提高变换反应速率,应当设法减小CO2的不利影响;H2组分对反应速率的影响很小,在实际应用过程中,可以忽略。  相似文献   

11.
张忠海  库宗军  刘义  屈松生 《中国化学》2005,23(9):1146-1150
以氯化镝、甘氨酸和L-酪氨酸为原料合成了配合物Dy(Tyr)(Gly)3Cl3·3H2O. 用溶解-反应热量计测得配合物在298. 15K时的标准摩尔生成焓为–(4287. 10±2. 14) kJ / mol. 并用TG-DTG技术对配合物进行了非等温热分解动力学研究, 推断出配合物第二步热分解反应的动力学方程为: dα/dT=3. 14 ×1020 s-1/βexp(-209. 37 kJ / mol /RT)(1-α)2.  相似文献   

12.
本文报道标题Zn(Ⅱ)配合物:[Zn(NBOCTB)](NO_3)_2·3H_2O的制备,晶体结构及热分解动力学.该晶体属三斜晶系,空间群p(?),a=1.4146(2),b=1.5407(3),c=1.8518(4)nm;α=62.09(2),β=72.46(2),γ=68.60(1)°.并对配合物第一和第二步热分解反应进行了非等温动力学研究.运用Achar法与Coats—Redfern法对非等温动力学数据进行分析,推断第一步脱水过程为成核和生长机理,其动力学方程为:dα/dt=Ae~(-E/RT),3/2(1-α)·[-In(1-α)]~(1/3);动力学补偿效应表达式为:InA=0.3739E-3.321.第二步分解过程为二级化学反应,其动力学方程为:dα/dt=Ae~(-E/RT)(1-α)~2;动力学补偿效应表达式为:InA=0.2100E-3.690.  相似文献   

13.
张岳  胡克源 《催化学报》1986,7(4):324-329
在氧大大过量条件下,分别考察了丙烯和丁酮在K/Mn原子比分别为0和0.12的两个氧化锰催化剂上的深度氧化反应动力学。结果表明,有机物类型不同,反应动力学特征及掺钾对动力学的影响也不同。丙烯深度氧化反应速度可用幂函数表达式r=Ae~(-△ERT)P_(C_3U_6)~α来表示,而丁酮深度氧化反应速度则可用氧过量且保持不变条件下的L-H方程r=KP_(C_4H_8O)/(l+bP_(C_4H_8O))~2来描述。  相似文献   

14.
长链烷烃脱氢主反应及其失活过程表观动力学研究   总被引:1,自引:0,他引:1  
本文提出了在绝热固定床上求取催化反应及其失活过程总表观动力学方程和参数的方法,并用此法处理长链烷烃催化脱氢的中试数据,得列在DH-140催化剂上脱氢主反应的表观动力学方程为:-r=k(p_P-p_(MO)·p_(H_2)/K_(P_I))~(1/2)主反应失活过程的表观动力学方程为:-(dk)/(dt)=k_dt 或k=k_0e~(-k)d~t主反应表观速度常数的总表达式为:k=e~8·~(53)R~(-26.7)/RT_(·e~(-te))~(0.64R-12.7/RT  相似文献   

15.
硫酸溶液中Ce3+在铂电极上阳极氧化动力学   总被引:4,自引:0,他引:4  
用分解极化曲线法研究了铂电极上Ce(Ⅳ)阳极形成动力学与机理.实验结果表明,电位在1.7—1.9V(vs.SCE)的高极化区,分解得到的O2和Ce(Ⅳ)的极化曲线Tafel斜率分别为2.303RT/βF和2×2.303RT/βF,两者的动力学方程可分别用下式表示:
i(O2)=k1aw4exp(βφF/RT)
i(Ce4+)=k2aw2[Ce3+]exp(βφF/2RT)
假设了Ce3+是通过反应中间基MCe(OH)3•Oad氧化的机理.由此所导出的动力学方程与实验结果相符.  相似文献   

16.
采用微分反应器,研究了新型Re/Pt/Ce0.8Zr0.2O2/蜂窝催化剂上低温水煤气变换反应的动力学行为。利用非线性最小二乘法处理正交设计的实验数据,获得了动力学方程的模型参数。所得的结果符合幂函数型动力学方程,经F检验和相关指数检验,实验值和模拟计算值符合较好。在该催化剂上水煤气变换反应的活化能为70kJ/mol,与文献中报道的数值相吻合。该催化剂上反应速率对CO、H2O、H2和CO2的反应级数分别为0.09、0.88、-0.54和-0.11,与传统的Cu基低变催化剂上的反应级数相差较大。这表明,低温水煤气变换反应在两种催化剂上遵循不同的反应机理。  相似文献   

17.
X射线晶体结构分析结果表明,标题化合物晶体(C_(36)H_(26)MnN_4O_4)属单斜晶系,空间群为P2_1/a,a=0.9833(3),b=1.8646(3),c=0.9449(1)nm,Z=2,最终因子R_W=0.057利用热重分析对配合物晶体两步热分解过程进行了非等温热力学研究,探讨了反应的可能机理,得到其相应的动力学参数.第一步非等温动力学方程为:da/dt=A·exp(-E/RT)·2(1-a)~(1/2),第二步:da/dt=A·exp(-E/RT)·3/2(1-a)[-1n(1-a)]~(1/3).  相似文献   

18.
用热重-差热分析法对Y_2O_3前驱体Y_2(CO_3)_3和Y_2(C_2O_4)_3水合物热分解过程及动力学进行分析,通过Kissinger法、 Ozawa法和Coast-Redfern法等对实验数据进行处理,得出Y_2(C_2O_4)_3水合物的热分解分四步进行,前两步为脱水过程,后两步为分解过程,四步反应对应的活化能E_c分别为64.24, 59.48, 146.20和112.37 kJ·mol~(-1);指前因子A_c分别为:4.09×10~8, 3.83×10~5, 6.86×10~(10)和6.18×10~5。每一步的机制函数分别是:1-(1-α)~(1/2)=kt, 1-(1-α)~(1/3)=kt,[(1-α)~(-2)-1]/2=kt和[-ln(1-α)]~(1/3)=kt。而Y_2(CO_3)_3在空气中热分解只有两步,第一步脱3个H_2O和1个CO_2分子,第二步脱2个CO_2分子生成Y_2O_3,两步对应的活化能E_c分别为88.29和116. 53 kJ·mol~(-1),指前因子A_c分别为1.5×10~(13)和9.4×10~7。它们的机制函数分别为(1-α)~(-1)-1=kt和[1-(1-α)~(1/3)]~2=kt。前驱体Y_2(CO_3)_3水合物相对来说比Y_2(C_2O_4)_3水合物更易分解生成Y_2O_3,两种前驱体的热分解都是最后一步为控速步骤。  相似文献   

19.
CO_2的化学转化具有环境及科学双重研究意义.CO_2具有很高的化学稳定性,加氢还原是一种有效的转化途径.其中将CO_2选择性还原为CO,即逆水汽变换(RWGS)反应(CO_2+H_2→CO+H_2O),具有重要的理论意义和应用价值:(1)CO作为合成气的重要原料,可以通过F-T合成生产更有价值的液体燃料;(2)H_2可通过可再生能源电解水制取,实现了全过程的零排放碳循环利用.从热力学角度分析,RWGS反应是一个吸热反应,高温有利于平衡转化率的提高.从动力学角度,一个对正反应有活性的催化剂可同时催化逆反应进行.可还原性载体负载贵金属催化剂,如Pt/Ce O_2,Au/Fe Ox,Au/Ce O_2等,具有很好的低温WGS催化活性,但它们在RWGS反应上的研究较少.我们制备了Ce O_2负载纳米Au催化剂(HRTEM表征结果表明金高度分散于Ce O_2载体表面,粒径为4–5 nm),其在常压CO_2加氢还原为CO反应中表现出优异的低温活性,分别在450°C,CO_2/H2=1,WHSV=12000 m L/(h·g),及400°C,H_2/CO_2=1,WHSV=6000 m L/(h·g)条件下,CO_2转化率接近平衡转化率,且CO的选择性为100%.随着H2/CO_2比例增加,CO_2转化率明显提高,且维持H_2/CO_2为1的化学计量比反应.通过原位漫反射红外光谱与质谱相结合的技术,研究了Au/Ce O_2催化剂上的RWGS反应路径:Au/Ce O_2催化剂表面形成了甲酸盐中间物种,它的消耗伴随着CO和H_2O产物的生成.说明Au/Ce O_2催化剂遵循中间体机理,这应该是其具有优异低温RWGS反应性能的微观机制.  相似文献   

20.
在不同离子强度的高氯酸钠水溶液中,用分光光度法测量自由卟啉H_2T_(β-N-EAES)PyPBr_4(简记为H_2P~(4+))与Gu(Ⅱ)离子的配位反应动力学,探讨高氯酸钠对Cu(Ⅱ)离子嵌入自由卟啉反应的催化本质.在给定条件下,高氯酸根与自由卟啉的缔合数n为1;缔合平衡常数K_0=3.70±0.42dm~3.mol~(-1).配位反应实验动力学方程为d[Cu(Ⅱ)P~(4+)]/dt=5.55×10~5γCu~2+γH_2P~4+γ(3)[ClO_4~-]~3[Cu~(2+)][H_2P]_总/(1.00+10~(2.02{H+}+10~(4.36{H~+}~2)、反应的活化能E=53.30kJ·mol~(-1),活化焓变△H~ =50.31kJ·mol~(-1),活化熵变△S~ =-77.65J·mol~(-1)·K~(-1).提出了金属卟啉生成反应中的ClO_4~-催化卟啉环变形的反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号