首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
甲砜霉素(TAP)与曙红Y(EOSY)在pH=1.52的酸性介质中相互反应生成离子缔合物,可使体系吸光度增大.最大吸收波长位于482 nm,表观摩尔吸光系数(ε)为4.27×10 4 L·mol-1·cm-1,甲砜霉素浓度在0.18~5.3 mg·L-1范围内遵从比尔定律,据此建立了以曙红Y为探针测定甲砜霉素的分光光度法.该法简便快速,有较高灵敏度,可用于实际样品中甲砜霉素的测定.  相似文献   

2.
在pH=3.0的B-R缓冲介质中,盐酸二甲双胍(MFH)与曙红Y(EY)形成离子缔合物,引起共振瑞利散射光谱显著增强,其最大特征散射波长位于292nm处。MFH的浓度在0.05~2.5μg/mL范围内与散射信号的增强(△I_(RRS))呈线性关系。MFH的检出限(3σ)为0.02μg/mL。讨论了适宜的反应条件和共存物质的影响。据此,提出了测定痕量MFH的光散射新方法,并应用于实际样品中MFH的测定,结果满意。  相似文献   

3.
基于在PH=1.5的CL缓冲溶液中异烟肼的加入使曙红Y的共振瑞利散射信号增强,建立了一种异烟肼测定方法.异烟肼浓度在0.02~4.2μg/mL范围内与体系散射强度的增强呈线性关系,检出限为0.01851μg/mL.该方法用于异烟肼片剂的测定,结果满意.  相似文献   

4.
在pH 7.56的Tris-盐酸缓冲溶液中,一定量的甲砜霉素与1.0×10-3mol·L-1溴甲酚绿溶液1.5 mL在总体积10 mL中反应生成离子缔合物,产生共振瑞利散射光谱,在其最大共振光散射峰波长340 nm处测定共振瑞利散射的强度IRRS。甲砜霉素的质量浓度在0.02~0.36 mg·L-1范围内与扣除空白值的相应共振瑞利散射强度△IRRS呈线性关系,方法的检出限(3s/k)为0.065 mg·L-1。方法用于测定两种甲砜霉素药物中甲砜霉素的含量,并以此试样为基体,用标准加入法做回收率和精密度试验,测得其平均回收率在98.9%~102%之间,相对标准偏差(n=6)在1.4%~1.7%之间。  相似文献   

5.
在pH值为4.1~5.0的Britton-Robinson(BR)缓冲溶液中,环丙沙星(ciprofloxacin,CPF)、诺氟沙星(norfloxacin,NRF)、氧氟沙星(ofloxacin,OFL)、左氧氟沙星(levofloxacin,LVF)等氟喹诺酮类抗菌素(fluoro-quinolone derivatives,FQs)与Pd(Ⅱ)反应形成无色阳离子螯合物,当其与曙红Y反应形成三元离子缔合物,共振瑞利散射(RRS)均显著增强,并产生新的RRS光谱,最大RRS峰均位于368nm处。在一定范围内FQNs的浓度与RRS强度(ΔI)成正比,4种抗菌素的线性范围和检出限分别为0~2.4×10-6g/mL和9.4×10-9g/mL(CPF);0~2.4×10-6g/mL和12.8×10-9g/mL(NRF);0~2.2×10-6g/mL和16.2×10-9g/mL(LVF);0~2.8×10-6g/mL和15.6×10-9g/mL(OFL)。并具有较好的选择性,用于针剂、鸡血清中诺氟沙星的测定时,其回收率在95.0%~101.5%。建立了一种灵敏、简便、快速测定喹诺酮类抗菌素的新方法。  相似文献   

6.
在pH 1.0~3.0的条件下,曙红Y与氯霉素反应生成红色离子缔合物,其最大显色波长和褪色波长分别位于483 nm和560 nm,表观摩尔吸光系数分别为4.49×104和1.20×104L·mol-1.cm-1,当用双波长叠加法测定时,表观摩尔吸光系数可提高到5.70×104L·mol-1.cm-1,在0.15~6.5 mg.L-1范围内,显色反应或褪色反应的吸光度绝对值与溶液中氯霉素浓度成正比,由此建立了测定氯霉素的吸收光谱法。该法用于药物及尿样中氯霉素的测定,结果满意。  相似文献   

7.
在pH2.4~2.8的酸性介质中,曙红Y分子(H2L)取代水分子而与Triton X-100形成氢键缔合物.该疏水性的氢键缔合物,在水相的"挤压"作用和范德华力的作用下,能进一步聚集形成纳米微粒.此时将引起吸收光谱的变化和荧光猝灭,并导致共振瑞利散射(RRS)显著增强,为建立褪色分光光度法、荧光猝灭法和共振瑞利散射法测定Triton X-100创造了条件.三种方法均有较高的灵敏度.其中以RRS法灵敏度最高,对于Triton X-100的检出限为20.6ng/mL.本文研究了曙红Y与Triton X-100相互作用的适宜条件和对吸收、荧光和RRS光谱的影响.考察了共存物质的影响,表明方法有良好的选择性.发展和建立了灵敏、简便、快速测定Triton X-100的分光光度、荧光猝灭法和RRS新方法.文中还结合红外光谱、透射电子显微镜技术和量子化学方法对曙红Y-Triton X-100氢键缔合物及纳米微粒的形成以及对相应的光谱特性的影响进行了讨论,并研究了方法在环境分析中的应用.  相似文献   

8.
在HCl-NaOAc酸性缓冲介质中,曙红Y(EY)与盐酸吡格列酮(PGH)反应形成1∶1的离子缔合物,不仅引起曙红Y的荧光猝灭(FLU),更能导致共振散射(RRS)的显著增强。荧光猝灭的激发和发射波长分别为λex=524nm和λem=544nm;最大共振散射波长为308nm,并在540nm处产生一共振峰。方法的线性范围分别为9.04×10-7~2.05×10-5mol/L(FLU)和1.6×10-7~5.1×10-6mol/L(RRS),检出限分别为1.88×10-7mol/L(FLU)和4.82×10-8mol/L(RRS)。研究了荧光和共振散射的光谱特征、适宜的反应条件及影响因素,据此建立了灵敏、简便、快速测定抗糖尿病药物盐酸吡格列酮的新方法。  相似文献   

9.
在pH3.5的HAc-NaAc缓冲介质中,盐酸二甲双胍(MFH)与Pd(Ⅱ)形成阳离子螯合物,它能进一步与酸性染料曙红Y(EY)的阴离子反应,形成离子缔合物。三元离子缔合物的生成将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)光谱显著增强,其最大散射波长分别位于292、540和327 nm。在一定范围内,三种散射信号的增强(ΔI_(RRS),ΔI_(SOS)和ΔI_(FDS))均与MFH的浓度呈线性关系。方法具有较高的灵敏度,RRS、SOS和FDS法对MFH的检出限(3σ)分别为1.7、13.2和22.7 ng·m L-1。考察了适宜的反应条件和共存物质的影响,结果表明该方法选择性良好。探讨了缔合物生成及散射增强的机理。据此,提出了简便、快速、准确且高灵敏度的测定痕量MFH的光散射新方法,并应用于片剂和尿样中MFH的测定,结果满意。  相似文献   

10.
建立了测定痕量大观霉素的共振瑞利散射(RRS)法。在弱碱性Tris-HCl缓冲介质中,大观霉素与橙黄Ⅳ相互作用后,共振瑞利散射显著增强,在352nm处的△IRRS最强。大观霉素的质量浓度在0.6~4.0mg/L范围内与△IRRS成正比,检出限(3Sb/S)为0.084mg/L。该法可用于市售大观霉素药物及人尿中大观霉素含量的测定,回收率为98.6%~101.5%。  相似文献   

11.
Liu S  Wang F  Liu Z  Hu X  Yi A  Duan H 《Analytica chimica acta》2007,601(1):101-107
In pH 5.8 acidic medium, the anionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) or sodium dodecyl sulfonate (SLS) can react with anthracycline antibiotics such as epirubicin (EPI), daunorubicin (DNR) or mitoxantrone (MXT) to form ion-association complexes, which lead to a great enhancement of resonance Rayleigh scattering (RRS) intensity and appearances of new RRS spectra. The maximum RRS peaks are situated at 313 nm for SDS-DNR and SDS-EPI system, 296 nm for SDS-MXT system. The linear ranges and detection limits for EPI, DNR and MXT are 0.26-20.0, 0.25-20.0, 0.14-10.0 and 0.074, 0.078, 0.042 μg mL−1, respectively. In this paper, the characteristics of the absorption, fluorescence and RRS spectra of the reaction products are studied as well as the optimum reaction conditions and analytical chemistry properties. A sensitive, simple and rapid RRS method for the determination of anthracycline anticancer antibiotics has been developed.  相似文献   

12.
In near neutral medium, the resonance Rayleigh scattering (RRS) intensities of an alone cationic surfactant and nucleic acid are very weak. However, when they combine with each other to form a complex, the RRS intensity of the solution is enhanced greatly. In this paper the reactions of five cationic surfactants with nucleic acids have been studied. The results show that the reaction conditions and RRS spectral characteristics of these reactions are similar, but their sensitivities are obviously different. Among them, the sensitivity of cetyldimethyl benzylammonium chloride (CDBAC) with an aryl and large molecular weight is the highest, while that of cetyl-trimethylammonium bromide (CTAB) without aryl and with small molecular weight is the lowest. The detection limits for ctDNA and yRNA of the former are 6.6 and 29.4 ng · mL-1, while that of the latter are 13.3 and 53.6 ng · mL-1. The method has better selectivity and can be applied to the determination of trace amounts of nucleic acids. Furthermore, i  相似文献   

13.
When trypsin reacts with Herring sperm DNA (hsDNA), Salmon sperm DNA (sDNA), and Calf thymus DNA (ctDNA) to form a complex, the resonance Rayleigh scattering (RRS) was remarkably enhanced and new RRS spectra appear. These new spectra have similar characteristics of RRS spectra. The maximum RRS peaks are at 307 nm (hsDNA, sDNA) and 290 nm (ctDNA), and other peaks are at 350 nm. The scattering intensity is proportional to the concentration of DNA or trypsin; so this intereaction can be used to determine trypsin using DNA or DNA using trypsin. In the determination of DNA using trypsin, the linear ranges for hsDNA, sDNA, and ctDNA are 0–2.3, 0–2.5, and 0–1.9 μg·mL−1, and the detection limits are 0.4, 0.7, and 1.1 ng·mL−1, respectively. In the determination of trypsin using hsDNA, the linear range is 0–30.0 μg·mL−1, and the detection limit is 39.0 ng·mL−1. In this paper, the intereaction conditions were optimized. The affecting factors, chemical properties of the complex, and the composition ratio of trypsin with DNA were investigated. Using trypsin as RRS probe, a sensitive method for the determination of trace amounts of DNA was developed. Translated from Chemical Journal of Chinese Universities, 2006, 27(3) (in Chinese)  相似文献   

14.
In pH 6.0-11.2 Britton-Robinson buffer solution, binding of heparin with crystal violet (CV) can result in a significant enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering, such as frequency doubling scattering (FDS) and second-order scattering (SOS). Their maximum scattering wavelengths, λex/λem, appear at 492 nm/492 nm for RRS, 984 nm/492 nm for FDS and 492 nm/984 nm for SOS, respectively. The optimum conditions of the reaction, the influencing factors and the relationship between the three scattering intensities and the concentration of heparin have been investigated. New methods for the determination of trace amounts of heparin based on the RRS, FDS and SOS methods have been developed. The methods exhibit high sensitivities, the detection limit for heparin is 2.9 ng ml−1 for the RRS method, 3.5 ng ml−1 for the FDS method and 3.3 ng ml−1 for the SOS method. The methods have good selectivity and were applied to the determination of heparin in heparin sodium injection samples with satisfactory results.  相似文献   

15.
在pH 8.71的Tris-HCI缓冲介质中,结晶紫(CV)与苯唑西林(OXA)结合,使体系的共振瑞利散射(RRS)急剧增强并出现新的RRS光谱,最大共振瑞利散射峰位于380nm处,苯唑西林的浓度在0.08~0.8μg·mL-1范围内与散射强度(△1RRS)成良好的线性关系,据此建立了测定苯唑西林的共振瑞利散射法,检出...  相似文献   

16.
The interaction of bleomycinA5 with nucleic acids has been investigated by using resonance Rayleigh scattering (RRS), molecular absorption and fluorescence spectra. The result shows that in near pH 2.2 buffer medium and absence of any metal ions, nucleic acids are capable of binding with bleomycinA5 (BLMA5) to form complexes which can remarkably enhance the RRS intensity and result in batho- chromic and hyperchromic molecular absorption of nucleic acids and fluorescence quenching of bleomycinA5. The RRS spectral characteristics for the binding products of bleomycinA5 with various DNA and RNA are similar, and the maximum RRS peaks are at 301 nm for ctDNA and sDNA, 370 nm for hsDNA, 310 nm for RNAtypeVI and RNAtypeIII, respectively. The increments of RRS intensity are greatly different in which DNA enhances greatly and RNA enhances lightly. In this work, the optimum condi- tions of the interaction and some influencing factors have been investigated. The reaction mechanism and a binding model for the interaction of BLMA5 with the nucleic acids are discussed. In addition, a highly sensitive, simple and rapid new method for the determination of DNA has been developed. The detection limits (3σ) are 5.7 ng/mL for ctDNA, 7.4 ng/mL for sDNA and 9.2 ng/mL for hsDNA, respectively. The method can be applied to determination of trace amounts of DNA.  相似文献   

17.
In pH 4.2-5.0 Britton-Robinson buffer solution medium, fluoroquinolone antibiotics (FLQs), such as ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OF), levofloxacin (LEV), lomefloxacin (LOM), and sparfloxacin (SPA), react with Cu (II) to form chelate cations, which further bind with erythrosine to form the ion association complexes. They can result in the changes of the absorption spectra. Simultane- ously, erythrosine fades obviously and the maximum fading wavelength is located at 526 nm. The fad- ing reactions have high sensitivities. Thus, new spectrophotometries of determination for these drugs are developed. The ion-association reactions result in the quenching of fluorescence, which also have high sensitivities. The detection limits for six antibiotics are in the range of 7.1-12.2 μg·L?1. Furthermore, the reactions can result in the enhancement of resonance Rayleigh scattering (RRS). The maximum scattering peaks of six ion-association complexes are located at 566 nm, and there are two small RRS peaks at 333 nm and 287 nm. The detection limits for fluoroquinolone antibiotics are in the range of 1.70 -3.10 μg·L?1 for RRS method. Among the above three methods, the RRS method has the highest sen- sitivity. In this work, we investigated the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions, and the properties of the analytical chemistry. In addi- tion, the mechanism of reactions were discussed by density function theory (DFT) and AM1 methods.  相似文献   

18.
The interaction between congo red (CR) and amikacin (AMK) was studied by resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS) combining with absorption spectrum. In a weak acidic medium, CR combined with AMK to form an ion association complex with the composition ratio of 1∶1 by electrostatic interaction, hydrophobicity and charge transferring effect. As a result, the new spectra of RRS, FDS, and SOS appeared and their intensities were enhanced greatly. The maximum wavelengths of RRS, FDS and SOS were located at 563 nm, 475 nm and 940 nm, and the scattering intensities were proportional to the concentration of AMK. These three methods have very high sensitivities, and the detection limits were 4.0 ng·mL?1 for RRS, 3.6 ng·mL?1 for FDS and 1.9 ng·mL?1 for SOS, respectively. At the same time, the methods have better selectivity. A new method for the determination of trace amounts of AMK with congo red by resonance scattering technique has been developed. The recovery for the determination of AMK in blood serum and urine sample was between 95.5% and 105.5%. In this study, the properties, such as enthalpy of formation, charge distribution and mean polarizability, were calculated by AM1 quantum chemistry method. In addition, the reaction mechanism and the reasons for the enhancement of scattering spectra were discussed.  相似文献   

19.
In pH 4.5 Britton-Robinson(BR)buffer solution,erythrosin(ET)can react with diphenhydramine(DP)to form a 1:1 ion-association complex,which not only results in the change of the absorption spectra,but also results in the great enhancement of resonance Rayleigh scattering(RRS)and the quenching of fluorescence.Furthermore,a new RRS spectrum will appear,and the maximum RRS wavelength was located at about 580 nm.In this work,the spectral characteristics of the absorption,fluorescence and RRS,the optimum conditions of the reaction and the properties of an analytical chemistry were inves- tigated.A sensitive,simple and new method for the determination of DP by using erythrosin as a probe has been developed.The detection limits for DP were 0.0020μg/mL for RRS method,0.088μg/mL for absorption method and 0.094μg/mL for fluorophotometry.There was a linear relationship between the absorbance,RRS and fluorescence intensities and the drug concentration in the range of 0.0067-2.0, 0.29-6.4 and 0.31-3.2μg/mL,respectively.The effects of the interaction of diphenhydramine and erythrosin on the absorption,fluorescence and resonance Rayleigh scattering spectra were discussed. In light polarization experiment,the polarization of RRS at maximum wavelength was measured to be P =0.9779,and it revealed that the RRS spectrum of DP-ET complex consists mostly of resonance scat- tering and few resonance fluorescence.In this study,enthalpy of formation and mean polarizability were calculated by AM1 quantum chemistry method.In addition,the reaction mechanism and the rea- sons for the enhancement of scattering spectra and the energy transfer between absorption,fluores- cence and RRS were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号