首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Three different techniques for the deposition of thin metal alloy films by plasma-enhanced chemical vapor deposition are described. These are the joint vaporization of a mixture of precursors, the use of separate sources connected directly to the reactor, and finally, the use of several reservoirs arranged in series. Various organometallics have been used as precursors to prepare combinations of Fe/Co and Au/Pt/Pd.  相似文献   

2.
The effect of preheating of dimethylaluminum hydride (DMAH) as a gas on the epitaxial growth in aluminum chemical vapor deposition (Al-CVD) is studied theoretically. The chemical changes of DMAH in the gas phase such as unimolecular decomposition reactions, bimolecular reactions and polymerizations are treated using ab initio molecular orbital method (MP2/6-31G**) and density functional theory (B3P86/LanL2DZ). The gas phase equilibrium composed of the previous reaction products under the usual experimental conditions for Al-CVD is also investigated in detail as the initial stage of the CVD process. From the energetics point of view, unimolecular decomposition reactions and bimolecular reactions hardly occur, however, polymerizations of DMAH take place readily at the low temperatures found in Al-CVD. A large amount of DMAH-dimer and a small amount of DMAH-monomer and trimer coexist in the equilibrium state.  相似文献   

3.
In this topic,we first discussed the requirement and performance of supercapacitors using carbon nanotubes(CNTs) as the electrode,including specific surface area,purity and cost.Then we reviewed the preparation technique of single walled CNTs(SWNTs) in relatively large scale by chemical vapor deposition method.Its catalysis on the decomposition of methane and other carbon source,the reactor type and the process control strategies were discussed.Special focus was concentrated on how to increase the yield,selectivity,and purity of SWNTs and how to inhibit the formation of impurities,including amorphous carbon,multiwalled CNTs and the carbon encapsulated metal particles,since these impurities seriously influenced the performance of SWNTs in supercapacitors.Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.  相似文献   

4.
A thin, gas-tight palladium (Pd) membrane was prepared by the counter-diffusion chemical vapor deposition (CVD) process employing palladium chloride (PdCl2) vapor and H2 as Pd precursors. A disk-shaped, two-layer porous ceramic membrane consisting of a fine-pore γ-Al2O3 top layer and a coarse-pore -Al2O3 substrate was used as Pd membrane support. A 0.5–1 μm thick metallic membrane was deposited in the γ-Al2O3 top layer very close to its surface, as verified by XRD and SEM with a backscattered electron detector. The most important parameters that affected the CVD process were reaction temperature, reactants concentrations and top layer quality. Deposition of Pd in the γ-Al2O3 top layer resulted in a 100- to 1000-fold reduction in He permeance of the porous substrate. The H2 permeation flux of these membranes was in the range 0.5–1.0 × 10−6 mol m−2 s−1 Pa−1 at 350–450°C. The H2 permeation data suggest that surface reaction steps are rate-limiting for H2 transport through such thin membranes in the temperature range studied.  相似文献   

5.
An oxidative chemical vapor deposition (OCVD) process was used to coat flexible textile fiber (viscose) with highly conductive polymer, poly (3,4‐ethylenedioxythiophene) (PEDOT) in presence of ferric (III) chloride (FeCl3) oxidant. OCVD is a solvent free process used to get uniform, thin, and highly conductive polymer layer on different substrates. In this paper, PEDOT coated viscose fibers, prepared under specific conditions, exhibited high conductivity 14.2 S/cm. The effects of polymerization conditions, such as polymerization time, oxidant concentration, dipping time of viscose fiber in oxidant solution, and drying time of oxidant treated viscose fiber, were carefully investigated. Scanning electron microscopy (SEM) and FT‐IR analysis revealed that polymerization of PEDOT on surface of viscose fiber has been taken place and structural analysis showed strong interactions between PEDOT and viscose fiber. Thermogravimetric analysis (TGA) was employed to investigate the amount of PEDOT in PEDOT coated viscose fiber and interaction of PEDOT with viscose fiber. The effect of PEDOT coating on the mechanical properties of the viscose fiber was evaluated by tensile strength testing of the coated fibers. The obtained PEDOT coated viscose fiber having high conductivity, could be used in smart clothing for medical and military applications, heat generation, and solar cell demonstrators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Thin-film polyimides were prepared by solvent-less vapor deposition polymerization (VDP) from pyromellitic dianhydride and 4,4′-oxydianiline at 200 °C for liner dielectric formation of vertical interconnects called through-silicon vias (TSVs) used in three-dimensionally stacked integrated circuit (3DICs). FTIR, synchrotron XPS, and TDS were employed for determining the imidization ratio, and in addition, the mechanical properties, coefficient of thermal expansion and Young's modulus, of the VDP polyimide were characterized on Si wafers. The VDP polyimide exhibited extremely high conformality, beyond 75%, toward high-aspect-ratio deep Si holes, compared with conventional SiO2 prepared by plasma-enhanced chemical vapor deposition. The adhesion between the VDP polyimide and Si wafer was enhanced by an Al-chelate promotor. Remarkably, the VDP polyimide TSV liner dielectrics showed much less thermomechanical stresses applied to the Si surrounding the TSVs than the plasma-chemical vapor deposition SiO2. The small keep-out zone is expected for scaling down highly reliable 3DICs for the upcoming real artificial intelligence society.  相似文献   

7.
The chemical vapor deposition (CVD) of crystalline thin films of neodymium hexaboride (NdB6) was achieved using either nido ‐pentaborane(9) or nido ‐decaborane(14) with neodymium(III) chloride on different substrates. The highly crystalline NdB6 films were formed at relatively moderate temperatures (835 °C, ca. 1 µm/h) and were characterized by scanning electron microscopy, X‐ray emission spectroscopy, X‐ray diffraction and glow discharge mass spectrometry. The NdB6 polycrystalline films were found to be pure and uniform in composition in the bulk material. Depositions using CoCl2, NdCl3 and B5H9 as the CVD precursors resulted in the formation of a mixture of NdB6 and CoB phases, rather than the ternary phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Large-scale MoS2 and WS2 inorganic fullerene-like (IF) nanostructures (onionlike nanoparticles, nanotubes) and elegant three-dimensional nanoflowers (NF) have been selectively prepared through an atmospheric pressure chemical vapor deposition (APCVD) process with the reaction of chlorides and sulfur. The morphologies were controlled by adjusting the deposition position, the deposition temperature, and the flux of the carrier gas. All of the nanostructures have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is proposed based on the experimental results. The surface area of MoS2 IF nanoparticles and the field-emission effect of as-prepared WS2 nanoflowers is reported.  相似文献   

9.
The effect of pressure during thermal plasma chemical vapor deposition of diamond films has been investigated for a pressure range from 100 to 760 Torr. The maximum growth rate in our experiments occurs at 270 Torr for substrate temperatures around 1000°C. The existence of an optimum pressure for diamond deposition may he related to the balance between generation and recombination of atomic hydrogen and carbon-containing active species in front of the substrate. To estimate the concentrations of atomic hydrogen and methyl radicals under thermal plasma conditions, calculations based on thermodynamic equilibrium have been performed. This approximate evaluation provides useful guidelines because rapid diffusion results in a near frozen chemistry within the boundary layer. The effect of substrate pretreatment on diamond deposition depends on the type of substrate used. Two growth modes have been observed-layer growth and island growth of diamond crystals on various substrates. Screw dislocations have been observed in diamond deposition in thermal plasmas, and defects such as secondary nucleations are more concentrated along (III) directions than along (100) directions.  相似文献   

10.
Effects of process parameters on diamond film synthesis in DC thermal plasma jet reactors are discussed including substrate material, methane concentration and substrate temperature. Diamond has been deposited on silicon, molybdenum, tungsten, tantalum, copper, nickel, titanium, and stainless steel. The adhesion of diamond film to the substrate is greatly affected by the type of substrate used. It has been found that the methane concentration strongly affects the grain size of the diamond films. Increased methane concentrations result in smaller grain sizes due to the increased number of secondary nucleations on the existing facets of diamond crystals. Substrate temperature has a strong effect on the morphology of diamond films. With increasing substrate temperature, the predominant orientation of the crystal growth planes changes from the (111) to the (100) planes. Studies of the variation of the film quality across the substrate due to the nonuniformity of thermal plasma jets indicate that microcrystalline graphite formation starts at the corners and edges of diamond crystals when the conditions become unfavorable for diamond deposition.  相似文献   

11.
First‐principles modeling can be a powerful tool for the understanding and optimization of bottom‐up processes for nanomaterials fabrication, such as chemical vapor deposition (CVD), a key technology for the development of advanced systems and devices. Molecule‐to‐material conversion by CVD involves complex chemical phenomena, which are often obscure and still largely unexplored. A proper modeling would require high level of accuracy, large sized models and should include both temperature effects and statistical sampling of reactive events. By presenting a few selected examples, this perspective surveys such problems and discusses currently available approaches for their solution. Possible strategies for future advances in the field are also highlighted. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Through our newly-developed “chemical vapor deposition integrated process (CVD-IP)” using carbon dioxide (CO2) as the raw material and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号