首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CFC and Halon replacements in the environment   总被引:8,自引:0,他引:8  
Substitute fluorocarbons may have direct environmental impact, for example as greenhouse gases, or indirect impacts through the products of their decomposition in the environment. The mechanisms of that atmospheric decomposition are reviewed here and shown to be well established now. The end products are halogen acids and trifluoroacetic acid, all of which pre-exist in the environment in quantities greater than are expected to arise from fluorocarbon use and emissions. Furthermore, the growth in use of fluorocarbon replacements has been shown to be far less than the fall in CFC and Halon production. Hydrochlorofluorocarbons (HCFCs) have replaced less than one third of CFCs and are, themselves, ozone depleting substances that will be phased out under the Montreal Protocol. The growth in hydrofluorocarbons (HFCs) amounts to about 10% of the fall in CFCs. It is likely that the impact of new fluorocarbons on climate change will be a very small fraction of the total impact, which comes mainly from the accumulation of carbon dioxide in the atmosphere.  相似文献   

2.
In 1974 Nobel prize winners Rowland and Molina proposed that chlorofluorocarbons (CFCs) were stable enough to reach the stratosphere, where, under intense solar radiation they released Cl atoms that could destroy stratospheric ozone protecting the earth’s surface from UV rays. The CFC industry funded both scientific studies to test the Rowland and Molina hypothesis and programmes to identify potential replacements, from which the HFCs emerged as likely candidates. After 5 years it was concluded, on the best scientific evidence available, that stratospheric ozone was being depleted at ∼3% per decade, but sufficient time was available for an orderly phase-out. Although the USA and a few other countries stopped the use of CFCs in aerosols little further work was done until 1985 when the CFC debate was renewed following the discovery of stratospheric ozone depletion over the Antarctic during its spring. Manufacturers restarted their R&D programmes; governments negotiated the Montreal Protocol in 1987 agreeing the partial phase-out of the CFCs. As a result of subsequent amendments CFCs have now been phased-out in the developed world and HCFCs will follow over the next two decades. This paper reviews what has been achieved and what remains to be done. Has the world-wide effort been successful in protecting the ozone layer? Have “acceptable” alternatives been found for the CFCs/HCFCs in their various applications?  相似文献   

3.
任仁 《化学教育》2005,26(8):1-3,10
《联合国气候变化框架公约--京都议定书》于2005年2月16日正式生效,本文介绍全球气候变暖的最新趋势,什么是温室气体,温室气体对于全球气候变暖的贡献大小所取决的主要因素,《京都议定书》要求减排的主要温室气体。  相似文献   

4.
IntroductionChlorofluorocarbons(CFCs) diffusing to the stratosphere isa major reason forozone de-pletion[1 ] .Also CFCshasbeen claimed to be notoriousforitsgreenhouseeffect[2 ] .So,recent-ly it has become very important to eliminate CFCs as far as protecting the ozone layer sur-rounding the earth is concerned.Among various kinds of approaches to do destruction toCFCs,the catalytic decomposition seems to be the most practical and energetically favorableone,especially for treating small amo…  相似文献   

5.
The assessment model for ultraviolet radiation and risk “AMOUR” is applied to output from two chemistry‐climate models (CCMs). Results from the UK Chemistry and Aerosols CCM are used to quantify the worldwide skin cancer risk avoided by the Montreal Protocol and its amendments: by the year 2030, two million cases of skin cancer have been prevented yearly, which is 14% fewer skin cancer cases per year. In the “World Avoided,” excess skin cancer incidence will continue to grow dramatically after 2030. Results from the CCM E39C‐A are used to estimate skin cancer risk that had already been inevitably committed once ozone depletion was recognized: excess incidence will peak mid 21st century and then recover or even super‐recover at the end of the century. When compared with a “No Depletion” scenario, with ozone undepleted and cloud characteristics as in the 1960s throughout, excess incidence (extra yearly cases skin cancer per million people) of the “Full Compliance with Montreal Protocol” scenario is in the ranges: New Zealand: 100–150, Congo: ?10–0, Patagonia: 20–50, Western Europe: 30–40, China: 90–120, South‐West USA: 80–110, Mediterranean: 90–100 and North‐East Australia: 170–200. This is up to 4% of total local incidence in the Full Compliance scenario in the peak year.  相似文献   

6.
Estimations of the effects of galactic cosmic rays (GCR) on chemical composition of the troposphere and stratosphere in view of known mechanisms of formation of NO and OH under impact of GCR have been made. It has been shown that GCR may significantly change a chemical composition of the upper troposphere and the stratosphere. However, GCR do not influence on an abundance of H-containing greenhouse gases (such as methane and ozone-harmless freons) but can noticeably reduce the concentration of atmospheric ozone. Those estimations have shown a necessity to take into account the influence of GCR on the composition of the atmosphere at the analysis of ozone related processes and, in particular, at forcasting recovery of the ozone layer.  相似文献   

7.
It is generally accepted that the Earth ozone layer is depleted by chlorine atoms produced via solar photolysis of chlorofluorocarbons (CFCs) in the upper stratosphere[1]. This photodissociation model predicts an ozone depletion maximum at an altitude between 30 and 40 km and negligible ozone depletion below 20 km[1]. However, the Antarctic/Arctic ozone hole appearing in each spring is observed to be located at an altitude of about 15 km[2]. The formation of the ozone hole has been attributed to heterogeneous reactions on the surface of polar stratosphere clouds (PSCs) consisting mainly of condensed water ice:HCl+ClONO2→Cl2+HNO3[3,4]. Recently, it has been observed that dissociation of CFCs by capture of low-energy electrons is enhanced by several orders of magnitude when CFCs are adsorbed on the surfaces of ice films of polar molecules such as H2O and NH3[5,6]. This enhancement is due to transfer of electrons in precursors of solvated states in polar molecular ice to CFCs that then dissociate[7]. This effect should be most efficient in the lower stratosphere of about 15 km, where low-energy electrons can be produced by cosmic-ray ionization and localized in precursors of solvated electrons in PSCs[8]. Strong and straightforward evidence of this new mechanism for ozone depletion has also been found in data obtained from field measurements (satellites, balloons, etc.)[8]. In this talk, we will present the data from both field and laboratory measurements and discuss the new mechanism for the formation of the ozone hole.  相似文献   

8.
作为主要温室气体,二氧化碳(CO2)导致了全球变暖与海洋酸化,同时CO2也是重要的C1资源.在温和条件下,利用催化剂将CO2高效、高选择性地转化为具有高附加值的化学品,对缓解CO2给气候变化带来的负面影响和减少对化石能源的依赖具有重要意义.作为一类新兴的多孔晶态材料,金属-有机框架(metal-organic fram...  相似文献   

9.
大气臭氧层破坏和CFCs替代物   总被引:15,自引:0,他引:15  
林永达  陈庆云 《化学进展》1998,10(2):228-235
CFCs 是与国民经济发展有关的重要化学材料。因为CFCs 破坏大气臭氧层,要限制它的使用并努力寻找它的替代物。研究和发展CFCs 替代物是有机氟化学的一个重要课题。  相似文献   

10.
The introduction of a monofluoromethyl moiety has undoubtedly become a very important area of research in recent years. Owing to the beneficial properties of organofluorine compounds, such as their metabolic stability, the incorporation of the CH2F group as a bioisosteric substitute for various functional groups is an attractive strategy for the discovery of new pharmaceuticals. Furthermore, the monofluoromethyl unit is also widely used in agrochemistry, in pharmaceutical chemistry, and in fine chemicals. The problems associated with climate change and the growing need for environmentally friendly industrial processes mean that alternatives to the frequently used CFC and HFBC fluoromethylating agents (CH2FCl and CH2FBr) are urgently needed and also required by the Montreal Protocol. This has recently prompted many researchers to develop alternative fluoromethylation agents. This Minireview summarizes both the classical and new generation of fluoromethylating agents. Reagents that act via electrophilic, nucleophilic, and radical pathways are discussed, in addition to their precursors.  相似文献   

11.
2009年哥本哈根全球气候大会之后,如何减排导致全球气候变暖的温室气体之一的CO2,并能将CO2转化成有用化工产品成为当前全球研究的热点.本文总结了至今在CO2捕集、存储和转化方面的进展工作.另外,结合各种CO2利用技术的原理和特点,总结出这些技术的优势与不足,对CO2的利用前景进行了展望.  相似文献   

12.
天然气水合物研究进展   总被引:3,自引:0,他引:3  
姚宇澄  殷福珊 《化学进展》1997,9(3):319-326
本文介绍了天然气水合物研究的历史和现状, 天然气水合物的结构, 它在冻土地带和海洋底部地表层的形成过程, 它对石油天然气工业的影响以及抑制生成天然气水合物的方法。介绍了天然气水合物作为潜在能源的巨大优势以及它对地球气候变化--温室效应的潜在危险性。  相似文献   

13.
The impetus for this paper is Canada’s commitment under the United Nations Framework Convention on Climate Change to reduce national greenhouse gas emissions as well as reducing our dependency on fossil fuels. Wood-based ethanol offers an excellent opportunity for greenhouse gas mitigation due to market potential, an ability to offset significant emissions from the transportation sector, a reduction of emissions from CO2-intensive waste-management systems, and carbon sequestration in afforested plantations. While there are technological and economic barriers to overcome, using wood-biomass as a source of ethanol can be an economically viable tool for reducing greenhouse gas levels in the atmosphere. This paper examines the costs and mitigation potential of the production of ethanol from biomass supplied from industrial wood waste as well as from trees harvested from afforested land.  相似文献   

14.
The literature on the plasma destruction of ozone depleting substances (ODS) such as CCl2F2 and CBrF3 is reviewed, and compared with more recent work on the decomposition of CCl2F2 and CBrClF2 in oxygen and steam. A comprehensive kinetic scheme for the decomposition of CBrClF2, which includes the decomposition of CCl2F2 and CBrF3, is presented. Simulations performed with this scheme, and experimental results, demonstrate the importance of allowing for the interconversion of ODS in the assessment of plasma destruction devices.Both experimental and modeling results show that the efficiency of operation of a practical plasma ODS destruction device can be quantified in terms of a throughput parameter, the feed to plasma power ratio (units mol (kWh)-1), or in terms of the thermochemical mixing temperature, Tm, of the plasma, ODS and oxidant. At low throughputs and high Tm, essentially complete destruction may be achieved, with below-ppm quantities of ODS remaining in the plasma exhaust gases. As throughput rises and Tm falls, a threshold is reached above which the ODS residual rises steeply towards the practical working limit set for ODS destruction by the Montreal Protocol (a destruction level of 99.99%). The assessment of this limit must include all ODS in the exhaust gases, weighted for ozone depleting potential. The use of steam, rather than oxygen, as the oxidizing gas gives superior destruction performance.  相似文献   

15.
Anthropogenic emissions of carbon dioxide (CO2) into the atmosphere have had a significant impact on the Earth's carbon cycle. As part of the global effort to reduce climate change, the geological storage of CO2 has been accepted as a method that may provide up to 25 % of the total reduction of emissions, although this figure is still subject to change. In Germany and worldwide, geological storage capacities are expected to be sufficient for several decades. Carbon dioxide can be captured from sources such as large‐scale industrial (energy, steel, cement or chemical) facilities and transported to long‐term storage sites in deep saltwater‐bearing aquifers. Above the porous sandstone reservoirs in which the CO2 is to be stored, an impermeable cap rock is required to provide a barrier for the upward‐migrating gas. In time, a significant quantity of the CO2 can be retained within the reservoir pore space by capillary forces, dissolved in water to form carbonic acid, or deposited as carbonate minerals. The storage site must be free of potential leakage pathways. To this end, extensive monitoring programs need to be carried out. The Ketzin pilot site, an example of such a program, has shown CO2 storage on a research scale to be safe and reliable.  相似文献   

16.
Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate‐ and tetrazolate‐based ligands. The tetrazolate‐based framework MOFF‐5 has an accessible surface area of 2445 m2 g?1, the highest among fluorinated MOFs. Crystals of MOFF‐5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone‐depleting substances and potent greenhouse species—with weight capacities of up to 225 %. The material exhibits an apparent preference for the adsorption of non‐spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.  相似文献   

17.
Foaming constitutes one of the most important industrial activities in polymer engineering to produce efficient thermal insulating materials. In particular, rigid insulating boards are produced worldwide on a large scale using blowing agents which eventually are released in the environment where they adversely impact the natural friendly stratospheric ozone layer. Concomitantly, the chemicals used as blowing agents contribute to the creation of the unfriendly tropospheric ozone layer generating the disastrous green house effect around our planet. The traditional foaming intermediates currently named freons, like chlorofluorocarbons (CFCs) currently used as blowing agents as well as the hydrochlorofluorocarbons (HCFCs) often considered as alternative blowing agents, must be banned from industrial processes and new (friendly) foaming agents have to be suggested and evaluated in terms of both easy engineering and environmental neutrality. Undoubtedly thermodynamics plays a major role in assessing the effective capability of those chemicals. Some CFCs still accepted and other possible simple gases like carbon dioxide and nitrogen have been considered. The in-depth thermodynamic investigation has been made possible thanks to new experimental developments to determine gas solubility in polymers and associated swelling as well as the thermodynamic properties of (gas + polymer) systems, including the thermophysical properties of polymers under gas sorption. Pertinent data have been generated for such properties over extended T and p ranges.  相似文献   

18.
The measurement of halogenated hydrocarbons in the atmosphere is a matter of great interest owing to their adverse effects on the human health and the environment. This work is focused on the measurement of three toxic chlorinated hydrocarbons: trichloroethylene (TCE), tetrachloroethylene (PCE), and carbon tetrachloride (CTC). Moreover, CTC is a greenhouse gas and an ozone depleting gas, restricted under the Montreal Protocol. Owing to their low reactivity, the target chlorinated hydrocarbons are considered to be persistent and, thus, many measurements only address their mean mixing ratios (a concentration measure expressed as mol/mol). Consequently, most of the reported data have low temporal resolution as daily, seasonal or yearly mean mixing ratios, obtained with few measurements. In the study reported in this paper hourly measurements were performed for a long period of time: almost two years for TCE and PCE, and one year for CTC. The main objective was to study the temporal variability of the chlorinated hydrocarbons with high temporal resolution in order to identify their main sources and to enhance the understanding of their atmospheric processes. During the measurement period, March 2007–February 2008 with N?=?3290 valid data, CTC showed a mean mixing ratio of 0.16?ppbv (SD?=?0.13) with lower temporal variability than the majority of non-methane hydrocarbons (NMHCs), being very well mixed in the urban atmosphere owing to its long lifetime. TCE and PCE mean mixing ratios for the May 2006–February 2008 period, were 0.13?ppbv (SD?=?0.42, N?=?4601) and 0.25?ppbv (SD?=?0.54, N?=?4709) respectively, with a larger temporal variability. The study of the sources of TCE and PCE reveals that both compounds have industrial and/or commercial origin, but with different main sources.  相似文献   

19.
Global air quality and climate   总被引:1,自引:0,他引:1  
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.  相似文献   

20.
The urgency of dealing with global climate change caused by greenhouse gas(GHG) emissions is increasing as the carbon dioxide(CO2) concentration in the atmosphere has reached a record high value of 416 ppm(parts per million). Technologies that remove CO2 from the surrounding air(direct air capture, DAC) could result in negative carbon emissions, and thus attracts increasing attention. The steady technical progress in adsorption-based CO2 separation greatly advanced the DAC, which largely relies on advanced sorbent materials. This review focuses on the latest development of porous solids for air capture; first discussed the main types of sorbents for air capture, which include porous carbons, zeolites, silica materials, and metal-organic frameworks(MOFs), particularly their modified counterparts. Then, we evaluated their performances, including uptake and selectivity under dry and humid CO2 streams for practical DAC application. Finally, a brief outlook on remaining challenges and potential directions for future DAC development is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号