首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.

Background  

Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds.  相似文献   

2.
To understand the biological effects of ionizing radiation on lymphomagenesis, we reared AKR/J mice for 130 days with exposure to either high-dose-rate (HDR, 0.8 Gy/min, a single dose of 4.5 Gy) or low-dose-rate (LDR, 0.7 mGy/h, a cumulative dose of 2.1 Gy) irradiation. After 130 days, we compared the mean thymus weight, analyzed the histological changes, and measured apoptotic cell numbers using the terminal deoxynucleotidyl transferase-mediated dUTP-end labeling (TUNEL) assay. We also used microarrays and quantitative polymerase chain reaction analysis (qPCR) to analyze the expression profiles of cancer pathway-related genes in the thymuses of the mice. The mean thymus weight of the LDR-irradiated mice decreased relative to Sham- and HDR-irradiated mice. Histopathological examination revealed that the neoplastic cells in the thymuses of the Sham- and HDR-irradiated mice were pleomorphic, with marked anisocytosis and anisokaryosis, whereas the cells and their nuclei were relatively small and uniform in size in the LDR-irradiated mice. Furthermore, TUNEL assays showed that the number of apoptotic cells was higher in the LDR-irradiated mice than in the Sham- and HDR-irradiated mice. Microarray analysis showed differentially expressed genes according to carcinogenic stage (DNA repair/genomic instability, DNA damage signaling pathway, cell cycle, cancer pathway, p53 signaling pathway, apoptosis, and T- and B-cell activation). qPCR data for cancer pathway-related genes showed that Cds1 gene expression was upregulated in the LDR-irradiated mice, whereas expression of the Itga4, Myc, and Itgb1 genes was upregulated in the irradiated mice. However, the functions of cancer pathway-related genes require further study and validation.  相似文献   

3.
This study is aimed at demonstrating the role played by a calpastatin isoform (Xcalp3) in Xenopus embryos. A specific monoclonal antibody (mAb) was raised against a glutathione S-transferase (GST)-Xcalp3 fusion protein and characterized by immunoblotting and confocal fluorescence microscopy on stage 20-36 embryos. Under these conditions, calpastatin reactivity is associated with a major 110kDa protein fraction and preferentially expressed by notochord and somitic cells. In notochord cells, anti-calpastatin reactive sites were initially restricted to the luminal space of the vacuoles and later became diffused throughout the cytoplasm. In contrast, anti-calpastatin reactive sites in somitic cells were initially diffused throughout the cytoplasm and became restricted to a few intracellular granules in the later developmental stages. At the ultrastructural level, notochord cells appeared as flattened discs containing several vacuoles and numerous electron-dense granules. During transition from stages 26 to 32, electron-dense granules were gradually reduced in number as vacuoles enlarged in size and losed their calpastatin reactivity. Electron-dense granules were also present in myoblast cells and their number gradually reduced during development. To determine whether these observations bear any causal relationship to the calpain/calpastatin system, a number of Xenopus embryos were examined both ultrastructurally and histochemically following exposure to a specific calpain inhibitor (CI3). Under these conditions, Xenopus embryos exhibited an altered right-left symmetry and an abnormal axial shortening. In CI3-treated stage 32 embryos, notochord cells had a reduced vacuolar extension and exhibited at the same time an increase in granular content. The overall morphology of the somites was also distorted and myoblasts were altered both in shape and granular content. Based on these findings, it is concluded that the calpain/calpastatin may play an important role in the control of notochord elongation and somite differentiation during Xenopus embryogenesis.  相似文献   

4.

Background

Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation.

Results

We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis.

Conclusion

The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.  相似文献   

5.

Background

Proteoglycan (PG) in the extracellular matrix (ECM) of the central nervous system (CNS) may act as a barrier for neurite elongation in a growth tract, and regulate other characteristics collectively defined as structural neural plasticity. Proteolytic cleavage of PGs appears to alter the environment to one favoring plasticity and growth. Brevican belongs to the lectican family of aggregating, chondroitin sulfate (CS)-bearing PGs, and it modulates neurite outgrowth and synaptogenesis. Several ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are glutamyl-endopeptidases that proteolytically cleave brevican. The purpose of this study was to localize regions of adult CNS that contain a proteolytic-derived fragment of brevican which bears the ADAMTS-cleaved neoepitope sequence. These regions were compared to areas of Wisteria floribunda agglutin (WFA) reactivity, a common reagent used to detect "perineuronal nets" (PNNs) of intact matrix and a marker which is thought to label regions of relative neural stability.

Results

WFA reactivity was found primarily as PNNs, whereas brevican and the ADAMTS-cleaved fragment of brevican were more broadly distributed in neuropil, and in particular regions localized to PNNs. One example is hippocampus where the ADAMTS-cleaved brevican fragment is found surrounding pyramidal neurons, in neuropil of stratum oriens/radiatum and the lacunosum moleculare. The fragment was less abundant in the molecular layer of the dentate gyrus. Mostly PNNs of scattered interneurons along the pyramidal layer were identified by WFA. In lateral thalamus, the reticular thalamic nucleus stained abundantly with WFA whereas ventral posterior nuclei were markedly immunopositive for ADAMTS-cleaved brevican. Using Western blotting techniques, no common species were reactive for brevican and WFA.

Conclusion

In general, a marked discordance was observed in the regional localization between WFA and brevican or the ADAMTS-derived N-terminal fragment of brevican. Functionally, this difference may correspond to regions with varied prevalence for neural stability/plasticity.  相似文献   

6.
7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号