首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desorption of NO from a well-characterized, epitaxially grown semiconducting C60 surface is reported. Two different channels are identified in the laser desorption. Both channels yield a comparably high desorption cross section of σ1=7.0×10-17 cm2 and σ2=5.5×10-17 cm2 for the first and second channel, respectively. The laser desorbed NO molecules are detected with rovibrational state selectivity by (1+1) REMPI in the -bands. In the first channel the desorbing molecules are highly excited with an average kinetic energy of 〈Ekin〉=174 meV. The rotational population distribution can be fitted by a rotational temperature of Trot=800 K. A rotational–translational coupling is observed, with velocities ranging from 1000 m/s for low to 1300 m/s for high rotational states. The vibrationally excited population is estimated to be less than 1% of the ground state. The second channel yields less excited molecules and an almost Boltzmann distributed rotational population with a temperature of Trot=280 K. The apparent velocity distribution derived from the pump-probe delay yields molecules much too slow to be explained by even a thermal desorption. This desorption is probably caused by a long-lived electronic excitation in the substrate for which a lifetime of τ≈160 μs is estimated. PACS 42.62.Fi; 34.50.Dy; 68.49.Df; 68.43.Tj; 79.20.La  相似文献   

2.
The interaction of hydrogen (deuterium) with different modified Pd(1 1 1) surfaces has been investigated. The focus was put on the energy and angel dependence of the desorbing molecules from oxygen covered, potassium covered and vanadium oxide covered surfaces. Conventional adsorption/desorption as well as permeation/desorption experiments were performed. For the oxygen covered surface optimum reaction rates for water production and the energy distribution of the reaction products were determined, both for the reaction of oxygen with molecular hydrogen as well as with atomic hydrogen. Potassium on the surface enhances the activation barrier for hydrogen adsorption resulting in a hyper-thermal desorption flux and a forward focused angular distribution of desorption. Permeation/desorption of deuterium from ultra-thin vanadium oxide films yield mainly thermalized desorbing molecules or slightly hyper-thermal, depending on the oxidation state of the surface oxide.  相似文献   

3.
The influence of temperature in the photodesorption of NO from a NiO(100)-surface is studied with a two-dimensional quantum wave packet approach. The complete process including laser-induced excitation and subsequent relaxation is treated explicitly from first principles. The electronic quenching caused by the interaction of the excited adsorbate–substrate system with electron–hole-pairs in the surface is treated with the surrogate Hamiltonian approach. We have implemented a parallelization scheme of the wave packet propagation based on a one-dimensional data decomposition to perform simulations in a reasonable computing time. The results are compared with mixed quantum-classical simulations and with experimental measurements. Both desorption yield and mean velocity of the desorbing molecules were enhanced with increasing temperature. The calculated rotational temperatures are consistent with experimental results. PACS  79.20.La; 68.43.Tj  相似文献   

4.
Markus Kratzer 《Surface science》2007,601(16):3456-3463
The angular distribution of desorbing deuterium molecules was investigated for the clean Pd(1 1 1) surface and for modified Pd(1 1 1) surfaces, either pre-covered with 0.2 ML potassium or with an ultra-thin V2O3 surface oxide. The palladium sample was part of a permeation source and the angular distribution was measured by lateral displacement of the sample in front of a differentially pumped flux detector. For the clean surface at 523 K, the angular distribution is close to a cosine distribution, but changes to a cos1.9Θ distribution at 700 K. Potassium on the surface alters the angular distribution to a cos3Θ function at 523 K. The ultra-thin vanadium oxide layer on the Pd(1 1 1) surface has no significant influence on the angular distribution of deuterium desorption. The experimental results were compared with existing data of the energy dependent sticking coefficient and the energy distribution of the desorption flux as measured by time-of-flight spectroscopy. This made it possible to get information on the applicability of detailed balance and normal energy scaling.  相似文献   

5.
A mixed quantum–classical method for the simulation of laser-induced desorption processes at surfaces is implemented. In this method, the nuclear motion is described classically, while the electrons are treated quantum mechanically. The feedback between nuclei and electrons is taken into account self-consistently. The computational efficiency of this method allows a more realistic multi-dimensional treatment of desorption processes. We apply this method to the laser-induced desorption of NO from NiO(100) using a two-state two-dimensional potential energy surface derived from ab initio quantum chemical calculations; we extend this potential energy surface to seven dimensions employing a physically reasonable model potential. By comparing our method to jumping wave-packet calculations on exactly the same potential energy surface we verify the validity of our method. We focus on the velocity, rotational, and vibrational distributions of the desorbing NO molecules. Furthermore, we model the energy transfer to the substrate by a surface oscillator. Including recoil processes in the simulation has a decisive influence on the desorption dynamics, as far as the velocity and rotational distribution is concerned. In particular, the bimodality in the velocity distribution observed in low dimensions and in the experiment disappears in a high-dimensional treatment. PACS  68.43.Tj; 68.43.Rs; 82.20.Gk; 82.20.Wt  相似文献   

6.
In this article the application of tunable dye lasers to desorption phenomena is illuminated. These lasers provide radiation continuously tunable from 105 nm in the vacuum ultraviolet to about 10 m in the mid-IR. By employing either laser induced fluorescence (LIF) or resonance enhanced multiphoton ionization (REMPI) spectroscopy almost all diatomic and many polyatomic molecules can be probed with the sensitivity required to detect desorbing molecules under UHV conditions. The spectral resolution of the lasers is sufficiently high that rotational state selectivity is achieved. Recent developments permit in addition the velocity distributions of molecules to be determined with internal quantum state resolution. Therefore very detailed information about the molecular dynamics has been obtained. In most experiments so far reactive recombinations off surfaces have been investigated. In this paper special emphasis will be given to the recombination of hydrogen on copper and palladium surfaces. For these systems very detailed data about the internal state populations at various surface temperatures have been obtained. The rotational cooling previously observed in molecular beam scattering has also been established for desorption. Strong vibrational excitation has been observed, which in the case of desorption from copper may be associated with the recombination dynamics, whereas for desorption of D2 from Pd(100) a molecular precursor state might be responsible. By measuring the velocity distribution in each quantum state, the complete energetics of the desorbing molecules has been determined. Some first experiments on laser induced desorption with state selective detection of the desorbing molecules will also be discussed. Finally, making use of the polarization analysis of the signal, alignment effects in the desorption can be observed, permitting observation of molecular dynamics with a magnifying glass.Heisenberg fellow of the Deutsche Forschungsgemeinschaft  相似文献   

7.
The abstraction of chemisorbed hydrogen on Si(1 0 0) and Si(1 1 1) induced by atomic hydrogen has been investigated by studying with a rotatable mass spectrometer the angle-resolved molecular hydrogen desorption from a Si surface exposed to a chopped beam of atomic hydrogen. The angular distributions of desorbing molecules can be fitted independent of the surface temperature and the surface reconstruction by a cosnθ function with n < 1 for Si(1 0 0) and Si(1 1 1). These results are interpreted by non-activated pathways involving site-specific hot-atom abstraction on two adjacent silicon atoms with one having a dangling bond. Possible mechanisms according to the surface reconstructions are discussed.  相似文献   

8.
We have studied electronic excitations at the surfaces of NiO (100), Cr2O3(111), and Al2O3(111) thin films with Electron Energy Loss Spectroscopy (EELS). On NiO (100) we observe surface electronic excitations in the energy range of the band gap which shift upon adsorption of NO. Ab initio cluster calculations show that these excitations occur within the Ni ions at the oxide surface. The (111) surface of Cr2O3 is characterized by distinct excitations which are also strongly influenced by the interaction with adsorbates. Temperature-dependent measurements show that two different states of the surface exist which are separated by an activation energy of about 10 meV. For Al2O3(111) we present data for a CO adsorbate. The oxide is quite inert with respect to CO adsorption as indicated by desorption temperatures between 38 K and 67 K. Due to the weak interaction with the substrate the a3II valence excitation of CO shows a clearly detectable vibrational splitting which has not been observed previously for a CO adsorbate in the (sub)monolayer coverage range. For several different adsorption state the lifetimes of the a3II state could be estimated from the halfwidths of the loss peaks, yielding values between 10–15 s for the most strongly bound species and 10–14 s for the CO multilayer.  相似文献   

9.
The excitation mechanism in the CO-NiO(100) system induced by a uv-laser pulse has been investigated from first principles. For the laser-driven process, the relevant electronically excited states are identified, and it is shown that a transition within the CO molecule is the crucial excitation step rather than substrate mediated processes. A new mechanism is proposed, in which the formation of a genuine C-Ni bond in the excited state is the driving force for photodesorption rather than electrostatic interactions, as has been found in similar systems. This results in very high velocities of CO molecules desorbing from the NiO(100) surface after electronic relaxation.  相似文献   

10.
This paper reports on recent progress on angle-resolved desorption leading to structure-sensitive desorption dynamics. The sensitivity is exemplified in NO and N2O reduction on Pd and Rh surfaces. The energy partitioning in the repulsive desorption of hyper-thermal products into their rotational and translational modes is an indispensable concept to examine the structure of a reaction site from desorbing molecules because it connects the structure of a transition state with each energy of desorbed products. The extent of the energy partitioning will be derived from the desorption-angle dependences of both the rotational and translational energies at each vibrational state. Such energy analysis has never been completed for any thermal reactive desorption. A new type of measurement is thus proposed. Additionally, we discuss the inadequate use of the detailed balance principle in desorption dynamics, which has prevented desorption dynamics from being sensitive to surface structures.  相似文献   

11.
Ionization and dissociation of diatomic molecules induced by a weak field (after preliminarily populating an intermediate level) and by intense, linearly polarized monochromatic radiation have been studied. Field-induced mixing of rotational components of various electronic-vibrational states of molecules (such as CO, NO, etc.) at field strength f∼10−4–10−5 atomic units can lead to migration among states with different angular momenta J. Therefore, ions with rotational momenta J + much higher than those prescribed by selection rules for three-photon absorption can be formed from molecules in the ground state. The possibility of selective formation of ions with J +≫1 and zero projection of the angular momentum on the polarization vector of the external electromagnetic radiation has been investigated. Zh. éksp. Teor. Fiz. 111, 1624–1632 (May 1997)  相似文献   

12.
《Surface science》1986,177(2):278-290
Using electron stimulated desorption (ESD) and electron stimulated desorption ion angular distribution (ESDIAD) techniques, we have determined that coadsorbed potassium systematically quenches the O+ ion yield from CO on the Ni(111) surface for 1000 eV electron excitation energies. The quenching appears to be a short range K-CO interaction; 3 or 4 CO molecules are affected for each K atom adsorbed on the surface. The quenching effect of K on CO indicates that a significant electronic perturbation of CO is caused by its local interaction with K. This effect prevents ESDIAD observation of the K-quenched CO species. In addition, the CO molecules that are not quenched at a potassium coverage of 0.02 K/Ni exhibit a normally oriented C-O bond similar to that found for CO adsorbed on a K-free Ni(111) surface.  相似文献   

13.
A quantum mechanical coupled channels approach to associative or recombinative desorption and scattering of diatomic molecules is described. The formulation is based on the concept of a reaction path and allows prediction of the vibrational excitation of desorbing molecules. We first consider very light molecules such as H2 and D2 desorbing via a Langmuir-Hinshelwood reaction. In a simple model neglecting rotations and substrate vibrations, the dependence of molecular vibrational excitation on incident energy, the curvature of the reaction path and the position and height of the saddle point are discussed. Various experimental results can be described with reasonable parameters. Vibrational excitation in Eley-Rideal reactions and rotational excitations in general are discussed only in a semiquantitative way. For heavier molecules the coupling to substrate vibrations in principle will become more important. Arguments will be presented that for the problem of vibrational excitation in desorption and scattering this coupling may still be neglected approximately. Results for vibrational excitations of CuF desorbing from Cu are in support of this simple point of view.  相似文献   

14.
We present the first quantum-resolved angular distributions of ground-state neutral molecules which are products of electron stimulated desorption (ESD) and electron stimulated dissociation. Laser resonance-enhanced multiphoton ionization (REMPI) and two-dimensional imaging have been used to obtain angular distributions of NO desorbed by 350 eV electrons from O-precovered Pt(111). In a similar fashion, we have measured angular distributions for the NO product of NO2 dissociation on clean and O-precovered Pt(111). In all cases, we observe narrow widths which are roughly the same as ion distributions determined by ESDIAD (ESD ion angular distributions). The angular distribution for NO ESD is sharply peaked (7° half-width at half maximum) along the surface normal for an O coverage (θo) of 0.25 monolayer (ML). The angular distribution of the NO product from dissociation of side-bonded NO2 on clean Pt(111) is unexpectedly peaked about the surface normal, and thus does not reflect dissociative forces parallel to the surface or the 25° off-normal ground-state bond direction. On O-precovered Pt(111), where NO2 is N-bonded, 6° off-normal beams are observed. When the substrate is precovered with θo > 0.5 ML, local disorder creates asymmetric site geometries which result in multiple peaked angular distributions with both normal and off-normal (9–10°) components; similar effects for NO ESD are observed. In all these studies, the NO angular distributions are invariant to rotational or vibrational state. This implies that the lateral translational degrees of freedom are essentially de-coupled from the internal modes of the molecule. The results are discussed in terms of desorption mechanisms, dissociative forces, site geometries, and disordered coadsorbate layers.  相似文献   

15.
The desorption of NO molecules from a thick C60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot(v″ = 0) = 370 K, Trot(v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10−17 cm2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.  相似文献   

16.
The influence of surface defects on the adsorption of CO by rhenium is investigated using LEED, AES and linear temperature programmed desorption. On both surfaces, thermal desorption reveals two adsorption states, the lower temperature α state being resolved into two substates, and one β state, all desorbing with first order kinetics. The α state is unaffected by the surface texture, its maximum population being the same on both surfaces, around 4 × 1014 molecules cm?2, similar to the value found for poly crystalline rhenium. On the other hand, the β state is strongly dependent on surface structure. On Re(0001) a maximum of 4 × 1013 molecules cm?2 was found, and 2 × 1014 molecules cm?2 on the stepped surface. The adsorption is activated and can be increased, by heating to 550 K, to 2 × 1014 molecules cm?2 on the basal plane and 3.5 × 1014 molecules cm?2 on the stepped surface. Ordered structures are now seen in LEED. Comparison of these results with previous results from polycrystalline rhenium indicate that the dissociation of β-CO on the latter surface must occur at defects other than steps.  相似文献   

17.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms.  相似文献   

18.
Mass-discriminating measurements of the angular distributions of electron-stimulated ion desorption (ESDIAD) from CO adsorbed on W(100) and coadsorbed with C and O have been performed. The O+ beams indicate normal and off-normal (by 5 to 13°) desorption which is interpreted as due to CO molecules bound in symmetric and in two types of unsymmetric bridges. Preadsorption of C suppresses the vertical state, while oxidation of the surface suppresses the off-normal states.  相似文献   

19.
20.
The joint adsorption of CO and NO molecules on the surface of nanodimensional nickel clusters formed on the Mo(110) face of a thin MgO(111) magnesium oxide film under conditions of ultrahigh vacuum is investigated by methods of infrared reflection and thermal desorption spectroscopy. It is revealed that the adsorption of the NO molecules changes significantly the state of the adsorbed CO molecules. Based on an analysis of thermal desorption and IR spectra, a conclusion can be drawn that the adsorption of the NO molecules stimulates the migration of the CO molecules from the metal cluster surface to the boundary between the cluster and oxide accompanied by a decrease in the tilt angle of the molecular axis to the surface. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 85–89, May, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号