首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term environmental monitoring of organic compounds in natural waters requires sensors that respond reproducibly and linearly over a wide concentration range, and do not degrade with time. Although polymer coated piezoelectric based sensors have been widely used to detect hydrocarbons in aqueous solution, very little information exists regarding their stability and suitability over extended periods in water. In this investigation, the influence of water aging on the response of various polymer membranes [polybutadiene (PB), polyisobutylene (PIB), polystyrene (PS), polystyrene-co-butadiene (PSB)] was studied using the quartz crystal microbalance (QCM). QCM measurements revealed a modest increase in sensitivity towards toluene for PB and PIB membranes at concentrations above 90 ppm after aging in water for 4 days. In contrast, the sensitivity of PS and PSB coated QCM sensors depended significantly on the toluene concentration and increased considerably at concentrations above 90 ppm after aging in water for 4 days. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FTIR) showed that there is a change in the sorption mechanism at higher toluene levels for PS and PSB. Positron annihilation lifetime spectroscopy (PALS) studies were performed to investigate the free volume properties of all polymers and to monitor any changes in the free volume size and distribution due to water and toluene exposure. The PALS did not detect any considerable variation in the free volume properties of the polymer films as a function of solution composition and soaking time, implying that viscoelastic and/or interfacial processes (i.e. surface area changes) are probably responsible for variations in the QCM sensitivity at high hydrocarbon concentrations. The results suggest that polymer membrane conditioning in water is an issue that needs to be considered when performing QCM measurements in the aqueous phase. In addition, the study shows that the hydrocarbon response is concentration dependant for polymers with a high glass transition temperature, and this feature is often neglected when comparing sensor sensitivity in the literature.  相似文献   

2.
The colloidal behavior of aqueous dispersions of functionalized multiwall carbon nanotubes (F-CNTS) formed via carboxylation and polymer wrapping with polyvinyl pyrrolidone (PVP) is presented. The presence of polymer on the nanotube surface provided steric stabilization, and the aggregation behavior of the colloidal system was quite different from its covalently functionalized analog. Based on hydrophobicity index, particle size distribution, zeta potential as well as the aggregation kinetics studied using time-resolved dynamic light scattering, the PVP wrapped CNT was somewhat less prone to agglomeration. However, its long-term stability was lower, and this was attributed to the partial unwrapping of the polyvinyl pyrrolidone layer on the CNT surface.  相似文献   

3.
Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA).  相似文献   

4.
《Electroanalysis》2017,29(3):929-936
The electrochemically controlled ion‐exchange properties of multi‐wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion‐exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion‐exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X‐ray photoelectron spectroscopy (XPS).  相似文献   

5.
A great deal of attention has been focused on exploiting novel methods to fabricate thin carbonaceous capsules from multiple components for advanced materials. A layer-by-layer (LbL) method is therefore being introduced to synthesize thin and multi-carbon nanotube (CNT)-based hollow capsules from CNT complexes with cationic or anionic complementarily functionalized beta-1,3-glucans as building-blocks. These ionic beta-1,3-glucans wrap around single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) to form water-soluble complexes with ionic groups on their exterior surface. Alternate self-assembly of these CNT complexes on the silica particles is demonstrated in solution by electrostatic interactions. The LbL adsorption processes were carefully monitored by zeta-potential measurements, frequency shifts of a quartz crystal microbalance (QCM), and electron micrographs. Silica particles were then dissolved away by HF acid to obtain CNT-based hollow capsules composed of SWNTs and DWNTs. We believe that these novel surface adsorption methods are useful for potential design of CNT-based advanced functional materials.  相似文献   

6.
This work reports the study of the effect of chemical functionalization of carbon nanotubes on their dispersion in poly(lactic acid). The nanotubes were functionalized by the 1,3‐dipolar cycloaddition reaction, generating pyrrolidine groups at the nanotube surface. Further reaction of the pyrrolidine groups with poly(lactic acid) was studied in solution and in the polymer melt. The former involved refluxing the nanotubes in a dimethylformamide/polymer solution; the latter was carried out by direct melt mixing in a microcompounder. The carbon nanotubes collected after each process were characterized by thermogravimetry and by X‐ray photoelectron spectroscopy, showing evidence of polymer bonded to the nanotube surface only when the reaction was carried out in the polymer melt. The composites with polymer modified nanotubes present smaller average agglomerate area and a narrower agglomerate area distribution. In addition, they show improved tensile properties at low CNT concentration and present lower electrical resistivity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3740–3750  相似文献   

7.
Electronic structures and formation mechanism of hydrogen functionalized carbon nanotube (CNT) have been investigated by means of density functional theory (DFT) method. The mechanism of hydrogen addition reaction to the CNT surface was also investigated. Pure and boron-nitrogen (BN) substituted CNT (denoted by CNT and BN-CNT, respectively) were examined as the carbon nanotubes. It was found that the additions of hydrogen atom to B (boron atom) and C (carbon atom) sites of BN-CNT proceed without activation barrier, whereas the hydrogenation of N (nitrogen atom) site needs the activation energy. The electronic states of hydrogen functionalized CNT and BN-CNT were discussed on the basis of theoretical results.  相似文献   

8.
The Ni/CNT catalyst was fabricated by directly dipping carbon nanotube precursors refluxed in 4 M of nitric acid into Ni electroless plating bath, and used to synthesize new carbon nanotubes. The experimental results indicate that the duration of acid-treatment of carbon nanotubes precursors exerts a great influence on the catalysis of Ni/CNT in the synthesis of carbon nanotubes and hence the structures of the new carbon nanotubes. When the carbon nanotubes precursors were refluxed for 0.5 h in 4 M of nitric acid, bamboo-shaped carbon nanotubes (BSCNT) or Y junction carbon nanotubes in the carbon products were obtained. As the duration of acid-treatment of carbon nanotubes precursors increased to 6 h, the as-prepared Ni/CNT displayed higher activity, and the carbon nanotube products were high pure without any Y junction structure or any separation layers in hollow.  相似文献   

9.
A big challenge in making a composite lies in achieving individual‐nanotube dispersion of carbon nanotubes (CNTs) in a polymer matrix, without aggregation and entanglement and excellent interfacial adhesion between the CNTs and the polymers matrix. In this communication, using polyethylene glycol‐200, we successfully prepared CNT‐reinforced polyimide composites that exhibit individual‐nanotube dispertion in the matrix at high‐loading CNT's. The content of CNTs in a composite can reach 43 wt%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Nitrogen-doped bamboo-shaped carbon nanotubes (N-BCNTs) and their non-doped conventional counterparts, multiwalled carbon nanotubes (MWCNTs) were compared as polymer reinforcing additives in polyvinyl chloride (PVC) matrix. The nanotubes were synthetized by catalytic chemical vapor deposition (CCVD) method. The purity of both nanotubes was measured by thermogravimetric analysis (TGA) and found to be >91%. Further analysis on the morphology and size of the carbon nanotubes (CNTs) were performed by transmission electron microscopy (TEM). The PVC powder was impregnated with CNTs in ethanol by using tip ultrasonicator. The dispersion media was evaporated, and the CNT/PVC powder was used to produce polymer fibers. The orientation of carbon nanotubes in the PVC matrix was characterized by scanning electron microscopy (SEM), and the presence of nanotubes were confirmed in case of all PVC samples. It can be observed on the SEM images that the nanotubes are fully covered with PVC. The tensile strength of the nanotube containing samples was tested and the N-BCNT/PVC composite was found to be better in this sense, thanks to the extraordinary structure of the nanotube. In case of the N-BCNT/PVC composite the measured young modulus was 39.7% higher, while the elongation at brake decreased by 33.6% compare to the MWCNT/PVC composite. These significant differences in the mechanical properties of the composites can be explained with the stronger interaction between N-BCNTs and PVC.  相似文献   

11.
Jacobs CB  Vickrey TL  Venton BJ 《The Analyst》2011,136(17):3557-3565
The surface properties of carbon-based electrodes are critically important for the detection of biomolecules and can modulate electrostatic interactions, adsorption and electrocatalysis. Carbon nanotube (CNT) modified electrodes have previously been shown to have increased oxidative sensitivity and reduced overpotential for catecholamine neurotransmitters, but the effect of surface functionalities on these properties has not been characterized. In this study, we modified carbon-fiber microelectrodes (CFMEs) with three differently functionalized single-wall carbon nanotubes and measured their response to serotonin, dopamine, and ascorbic acid using fast-scan cyclic voltammetry. Both carboxylic acid functionalized and amide functionalized CNTs increased the oxidative current of CFMEs by approximately 2-6 fold for the cationic neurotransmitters serotonin and dopamine, but octadecylamine functionalized CNTs resulted in no significant signal change. Similarly, electron transfer was faster for both amide and carboxylic acid functionalized CNT modified electrodes but slower for octadecylamine CNT modified electrodes. Oxidation of ascorbic acid was only increased with carboxylic acid functionalized CNTs although all CNT-modified electrodes showed a trend towards increased reversibility for ascorbic acid. Carboxylic acid-CNT modified disk electrodes were then tested for detection of serotonin in the ventral nerve cord of a Drosophila melanogaster larva, and the increase in sensitivity was maintained in biological tissue. The functional groups of CNTs therefore modulate the electrochemical properties, and the increase in sensitivity from CNT modification facilitates measurements in biological samples.  相似文献   

12.
采用原位芳基重氮化反应对碳纳米管进行苯磺酸功能化, 进而制备了聚吡咯/苯磺酸化碳纳米管复合材料(PPy/f-MWCNTs), 通过透射电镜(TEM)及扫描电镜(SEM)测试发现, 氢键诱导使聚吡咯成功地包覆在碳纳米管表面. 循环伏安和恒流充放电测试结果表明, 复合材料具有良好的电化学电容性能, 当聚吡咯与苯磺酸化碳纳米管质量比为1:1时, 复合材料在1.0 A·g-1的电流密度下的比容量达266 F·g-1, 而且聚吡咯利用率比未功能化聚吡咯/碳纳米管(PPy/p-MWCNTs)和纯聚吡咯(PPy)提高了1倍以上.  相似文献   

13.
Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.  相似文献   

14.
Novel nanocomposite membranes (PVA–CNT(CS)) were prepared by incorporating chitosan-wrapped multiwalled carbon nanotube (MWNT) into poly(vinyl alcohol) (PVA). To further explore the intrinsic correlation between pervaporation performance and free volume characteristics, molecular dynamics simulation was first introduced to qualitatively analyze the contribution of carbon nanotube incorporation on improving free volume characteristics of the nanocomposite membranes. Secondly, the pervaporation performance of PVA–CNT(CS) nanocomposite membranes was investigated using permeation flux and separation factor as evaluating parameters. For benzene/cyclohexane (50/50, w/w) mixtures at 323 K, permeation flux and separation factor of pure PVA membrane are only 20.3 g/(m2 h) and 9.6, respectively, while the corresponding values of PVA–CNT(CS) (CNT content: 1%) nanocomposite membrane are 65.9 g/(m2 h) and 53.4. In order to explain the simultaneous increase of permeation flux and separation factor, as well as to check the calculation reliability of molecular dynamics simulation, positron annihilation lifetime spectroscopy (PALS) analysis was employed.  相似文献   

15.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

16.
In this study a series of melt mixed multi-walled carbon nanotube (MWNT)/Polyethylene composites with several carbon nanotube (CNTs) concentrations were investigated. A good dispersion of the nanotubes in the matrix was seen using scanning electron microscopy. Melt rheological measurements in dynamic mode were used to estimate the percolation state of the CNTs within the polymer and to provide information about the structure of the CNT/polymer composites. The effect of nanotubes on the non-isothermal crystallization behaviour of the nanocomposites was also studied by differential scanning calorimetry.  相似文献   

17.
国立秋  王锐  徐化明  梁吉 《分析化学》2006,34(3):359-361
电弧法自制碳纳米管原子力显微镜针尖,对其末端进行功能化修饰,然后测量配体-受体之间的作用力。运用没有功能化修饰的碳纳米管针尖与修饰有亲和素分子的基底进行接触测量时,没有粘滞力出现;而运用末端修饰生物素分子的碳纳米管针尖测量时,有粘滞力产生。功能化的碳纳米管针尖直接测得的粘滞力均大约200pN,此值符合一对配体生物素和受体亲和素之间的作用力。这一结果很难用传统的针尖获得,功能化修饰的碳纳米管针尖能够克服传统针尖在力测量中的局限,在生物学和化学领域有着广泛的应用前景。  相似文献   

18.
An effective and versatile method for tube-length-specific functionalization of carbon nanotubes through a controllable embedment of vertically-aligned carbon nanotubes into polymer matrices is reported, which allows not only asymmetric functionalization of nanotube sidewalls, but also facile introduction of new properties (e.g. magnetic) onto the region-selectively functionalized carbon nanotubes.  相似文献   

19.
An azobenzene-containing liquid crystalline polymer/carbon nanotube composite strip was synthesized that shows rapid and reversible deformation under UV irradiation. The aligned nanotubes also provide the composite with much higher mechanical strength than pure liquid crystalline polymers and a very high electrical conductivity.  相似文献   

20.
It is difficult to produce rubbery polymer nanofibers, that is, polybutadiene, by the method of electrospinning, since during electrospinning rubbery polymer fibers join and entangles due to their low Tg. For this reason, it is not easy to achieve the fiber form out of these polymers. Homogeneously electrospun carbon nanotubes (CNT)‐filled polybutadiene (PBu) and poly(ethylene oxide) (PEO) composite elastomeric fibers exhibit distinctive physical features such as uniform fiber diameter and distribution with significant improvements in thermomechanical properties. Controlled hydrophilicity/hydrophobicity with the components allows to generate homogenous, thermally stable and stretchable bio‐composite scaffold, and fibrous antibacterial membrane scaffolds out of PBu/PEO/CNT composite. We have combined the exciting properties of PEO with high pore density with the rubber elasticity of PBu via dissolving them in a dichloromethane/ethyl acetate organic solvent, and subsequently producing electrospun woven fibers with different PBu/PEO ratios. Frequency‐dependent thermomechanical characterization via dynamic mechanical analysis reveals pronounced changes in the onset and extent of melting, as well as the storage and loss modulus values at the onset of melting, in particular when small amounts (1.25% by wt%) of CNTs are present. The characteristic bands were detected for the PBu/PEO and PBu/PEO/CNT samples by means of Raman and Fourier‐transform infrared spectroscopy. CNT addition increases the hydrophobicity via the increase in roughness as attained by atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号