首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

Four types of undisturbed soils around the Es-Salam reactor (Algeria) were used to evaluate the sorption behavior of strontium. The batch study was carried out under different experimental conditions. The kinetics were well fited by pseudosecond order model. Soils’s activation energies were 12.37, 14.76, 15.5 and 16.17 kJ mol−1, corresponding to ion-exchange-type sorption. Sorption was exothermic (ΔH° < 0), spontaneous (ΔG° < 0) and favorable at low temperature. Competing cations, particularly Ca2+ reduce the Sr adsorption. Desorption reaction showed a higher value of Sr in the easily extractible phase indicating a relative availability of the element.

  相似文献   

2.
Qiao  Dan  Wang  Yue  Li  Fan  Wang  Daya  Yan  Baijun 《Journal of Thermal Analysis and Calorimetry》2019,137(2):389-397

Controlling the conditions of the oxygen partial pressure and temperature to prepare the WO2.72 (W18O49) via reduction was possible through thermodynamic consideration. WO2.72 was synthesized via heating to 1073 K in 5% H2–95% Ar mixture gas flow from ammonium tungstate which was prepared by hydrothermal process. With the reducing prolonging time, the products were changed from WO2.72 to WO2 and then metal W. Thermogravimetric (TG) analysis showed ammonium tungstate decomposed completely to WO3 at 773 K. Isothermal reductions using TG analysis were carried out at 905 K, 925 K, 945 K and 973 K in 5% H2–95% Ar mixture gas flow, respectively. The whole reduction from WO3 to WO2.72 divided into three parts: initial nucleation and growth stage, final interfacial reaction stage and intermediate stage, was controlled jointly by both mechanisms. Fitting results showed that the initial stage obey the one-dimensional Avrami–Erofeev equation, the apparent activation energy was 132.7 ± 1.1 kJ mol−1 and the pre-exponent factor was 4.82 × 105 min−1; the final stage expressed by 2-dimensional interfacial reaction, the apparent activation energy was 144.0 ± 2.1 kJ mol−1 and the pre-exponent factor was 3.20 × 105 min−1.

  相似文献   

3.

The dairy processing industry in India, on an average basis, involves an extensive amount of thermal and electrical energy consumption, i.e. 2.51 × 105 kW MT−1 and 1.44 × 105 kW MT−1, respectively, for an installed milk food processing capacity of 1.21 × 105 TPD. However, energy consumption spectrum depends upon the level of automation along with better utilisation of utility resources. The global ultra-high-temperature (UHT) pasteurised milk trade was valued at € 52.29 billion in 2012 and is expected to reach € 114.38 billion by 2019–2020. In the present work energy, exergy and exergoeconomic evaluation of ultra-high-temperature milk pasteurisation plant have been considered. The overall energy efficiency and efficiency pertaining to executable potential of energy in UHT Milk Processing Unit were reported to be 86.36% and 53.02%. The specific exergy destruction and specific exergy improvement potential were estimated to be 219.23 kJ kg−1 and 137.60 kJ kg−1, respectively. The highest possible retrievable exergy potential of the plant was associated with heating coil, i.e. 158.98 kW, followed by homogeniser (54.62 kW), which pinpointed towards the possibility of huge technical improvement. The processing cost was enumerated to be highest for heating coil (rk: 38.35%) followed by regeneration-1 (rk: 23.40%). Further, the total operating cost rate associated with thermodynamic deficiencies of subunits was estimated to be highest for heating coil (4859.82 € H−1) followed by regenerator-2 (1264.88 € H−1) and homogeniser (1187.14 € H−1). The broad survey of thermoeconomic indices of subunits indicated that the level of exergetic destruction was far more on higher side.

  相似文献   

4.
Smili  B.  Abadlia  L.  Bouchelaghem  W.  Fazel  N.  Kaban  I.  Gasser  F.  Gasser  J. G. 《Journal of Thermal Analysis and Calorimetry》2019,136(3):1053-1067

In this paper, the electronic transport properties of as-spun Zr66.7Ni33.3 alloys were studied in detail by a combination of electrical resistivity and absolute thermoelectric power measurements over a temperature range from 25 up to 400 °C. Moreover, the isochronal and isothermal crystallization kinetics of Zr66.7Ni33.3 glassy alloy has been investigated based on the electrical resistivity measurements. The comparative study of the crystallization kinetics of these binary amorphous alloys was carried out, for the first time to our knowledge, using an accurate method for electrical resistivity measurements. In the isochronal heating process, the apparent activation energy for crystallization was determined to be, respectively, 371.4 kJ mol−1 and 382.2 kJ mol−1, by means of Kissinger and Ozawa methods. The Johnson–Mehl–Avrami model was used to describe the isothermal transformation kinetics, and the local Avrami exponent has been determined in the range from 2.97 to 3.23 with an average value of 3.1, implying a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. Based on an Arrhenius relationship, the local activation energy was analyzed, which yields an average value Ex = 376.2 kJ mol−1.

  相似文献   

5.

1-Allyl-3-methylimidazolium chloride [AMIM]Cl hybrid perfluorosulfonic acid (PFSA) composite electrolyte membrane was prepared and characterized by TG and FTIR technique. The conductivity was measured using AC impedance method. The results showed that when raised from 20 to 90 °C, the conductivity of composite membrane was increased from 4.50 × 10−6 to 1.34 × 10−5 S cm−1, before and after the modification of triethylamine, the thermal stability of composite membrane was not changed, but the TEA-PFSA with [AMIM]Cl reactivity was a little difference. However, the heat resistance of composite membrane was significantly enhanced compared with that of PFSA membrane, the peak temperature of composite membrane almost disappeared in first stage, and offset to the high-temperature zone. When heated at 350 °C, the decomposition rate of PFSA, 10%[AMIM]Cl-PFSA and 10%[AMIM]Cl-TEA-PFSA membrane was 13.71, 3.67 and 1.26%, respectively. If the decomposition process follows isothermal first-order reaction and the conversion rate α is 10%, the activation energy E α of the composite membrane is 97.4 kJ mol−1. Besides, the isothermal lifetime of composite membrane was also measured.

  相似文献   

6.
The kinetic curves for oxidation of dopamine hydrochloride in aqueous solution in the presence of ammonium peroxydisulfate were obtained by UV–vis spectroscopy and potentiometry. It was shown that the reaction follows the first-order kinetic equation and proceeds at a low rate. The values for the activation energy and the preexponential factor were determined as 75 kJ × mol−1 and 4 × 108 s−1, respectively. The activation entropy was found having a negative value of −89 J × mol−1 × K−1. The first reaction order, the low preexponential factor and the negative activation entropy value for the reaction between the 2-(3,4-dihydroxyphenyl)ethanammonium cation and the peroxydisulfate anion were explained by the formation of ionic associates, which slowly enter into the internal redox reaction.  相似文献   

7.
The thermal decomposition behavior of 3,4,5-triamino-1,2,4-triazole dinitramide was measured using a C-500 type Calvet microcalorimeter at four different temperatures under atmospheric pressure. The apparent activation energy and pre-exponential factor of the exothermic decomposition reaction are 165.57 kJ mol−1 and 1018.04 s−1, respectively. The critical temperature of thermal explosion is 431.71 K. The entropy of activation (ΔS ), enthalpy of activation (ΔH ), and free energy of activation (ΔG ) are 97.19 J mol−1 K−1, 161.90 kJ mol−1, and 118.98 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 422.28 K. The specific heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide was determined with a micro-DSC method and a theoretical calculation method. Specific heat capacity (J g−1 K−1) equation is C p = 0.252 + 3.131 × 10−3  T (283.1 K < T < 353.2 K). The molar heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide is 264.52 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion of 3,4,5-triamino-1,2,4-triazole dinitramide is calculated to be a certain value between 123.36 and 128.56 s.  相似文献   

8.
Poly(3-hydroxybutyrate), PHB, has been structurally modified through reaction with hydroxy acids (HA) such as tartaric acid (TA) and malic acid (MA). The crystallization kinetic of the samples was evaluated by isoconversional method through nonlinear fitting to obtain the estimation for activation energy (E a ) and pre-exponential (A) values. The thermal behavior of the crystallization temperature, 44.8 and 58.9 °C at 5 °C/min, and results obtained to the average activation energy, 73 ± 9 kJ mol−1 and 63 ± 1 kJ mol−1, to PHB/MA and PHB, respectively, are suggesting that malic acid may be deriving plasticizer units from its own PHB chain. PHB/TA show increase in the medium value of E a, 119 ± 2 kJ mol−1 and T c = 48.2 °C (at 5 °C/min), indicating that tartaric acid is probably interacts in different way to the of PHB chain (E a=73 ± 9 kJ mol−1, T c = 44.8 °C at 5 °C/min).  相似文献   

9.
Rate coefficients, k1, for the gas-phase OH radical reaction with the heterocyclic ether C4H4O (1,4-epoxybuta-1,3-diene, furan) were measured over the temperature range 273–353 K at 760 Torr (syn. air). Experiments were performed using: (i) the photochemical smog chamber THALAMOS (thermally regulated atmospheric simulation chamber, IMT NE, Douai-France) equipped with Fourier Transform Infrared (FTIR) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) detection methods and (ii) a photochemical reactor coupled with FTIR spectroscopy (PCR, University of Crete, Greece). k1(273–353 K) was measured using a relative rate (RR) method, in which the loss of furan was measured relative to the loss of reference compounds with well-established OH reaction rate coefficients. k1(273–353 K) was found to be well represented by the Arrhenius expression (1.30 ± 0.12) × 10−11 exp[(336 ± 20)/T] cm3 molecule−1 s−1, with k1(296 K) measured to be (4.07 ± 0.32) × 10−11 cm3 molecule−1 s−1. The k1(296 K) and pre-exponential quoted error limits are 2σ and include estimated systematic errors in the reference rate coefficients. The observed negative temperature dependence is consistent with a reaction mechanism involving the OH radical association to a furan double bond. Quantum mechanical molecular calculations show that OH addition to the α-carbon (ΔHr(296 K) = −121.5 kJ mol−1) is thermochemically favored over the β-carbon (ΔHr(296 K) = −52.9 kJ mol−1) addition. The OH-furan adduct was found to be stable over the temperature range of the present measurements. Maleic anhydride (C4H2O3) was identified as a minor reaction product, 3% lower-limit yield, demonstrating a non-ring-opening active reaction channel. The present results are critically compared with results from previous studies of the OH + furan reaction rate coefficient. The infrared spectrum of furan was measured as part of this study and its estimated climate metrics are reported.  相似文献   

10.
Thermal analysis techniques remain important tools amongst the large variety of methods used for analysis of the dehydroxylation of kaolinite. In the present study, the kinetics of dehydroxylation of Algerian kaolinite, wet ball milled for 5 h followed by attrition milling for 1 h, was investigated using differential thermal analysis (DTA) and thermogravimetry (TG). Experiments were carried out between room temperature and 1350 °C at heating rates of 5, 10 and 20 °C min−1. The temperature of dehydroxylation was found to be around 509 °C. The activation energy and frequency parameter evaluated through isothermal DTA treatment were 174.69 kJ mol−1 and 2.68 × 109 s−1, respectively. The activation energies evaluated through non-isothermal DTA and TG treatments were 177.32 and 177.75 kJ mol−1, respectively. Growth morphology parameters n and m were found to be almost equal to 1.5.  相似文献   

11.
Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (E a), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, E a and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, E a for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., E a, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying E a with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.  相似文献   

12.
The kinetic parameters, namely the triplet activation energy EA, model function f(α) or g(α) and pre-exponential factor A of the oxidation of Constantan tapes in 1 atm of oxygen have been determined from both isothermal and non-isothermal thermogravimetry. For isothermal experiments, with temperatures ranging from 650 °C to 900 °C, the results from direct conversion of the weight increase as a function of the time and curve fitting, are compared with the isoconversion method. For the non-isothermal experiments, with heating rates from 1 °C/min to 20 °C/min, comparison is made between the Friedman differential method and the integral methods of Kissinger, Ozawa and Li and Tang. All methods give apparent activation energies with relative standard deviations as low as 3%. The results converge to the identification of three stages in the oxidation behaviour. A parabolic law for reaction extents α below 15% with EA = 246 ± 7 kJ mol−1, ln A = 14.3, is followed by two linear stages with EA = 244 ± 4 kJ mol−1 and ln A = 15.3 for 0.18 < α < 0.35 and EA = 228 ± 15 kJ mol−1, ln A ≈ 13 for α > 45%, respectively.  相似文献   

13.
The kinetics and mechanism of formation of gehlenite, Al–Si spinel phase, wollastonite and anorthite from the mixture of kaolinite and calcite was investigated by differential thermal analysis under the heating rate from 283 to 293 K min−1 using Kissinger equation. The changes in the phase composition of the sample during the thermal treatment were investigated via simultaneous TG-DTA, in situ high-temperature x-ray diffraction analysis and high-temperature heating-microscopy. The crystallizations of gehlenite and Al–Si spinel phase show apparent activation energy of (411 ± 5) kJ mol−1 and (550 ± 9) kJ mol−1, respectively. The value of kinetic exponent corresponds to the process limited by the decreasing nucleation rate for gehlenite while constant nucleation rate is determined for Al–Si spinel phase. Anorthite crystallizes from the eutectic melt and the process shows the apparent activation energy of (1140 ± 25) kJ mol−1. The process is limited by the constant nucleation rate of a new phase.  相似文献   

14.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

15.
An organic polymeric resin was synthesized by anchoring p ‐aminobenzoic acid onto macroporous chloromethylated polystyrene beads, and was used for Zn(II) removal from aqueous solutions. The resin exhibited an initially rapid adsorption property for Zn(II) with equilibrium time of 10 h and the maximum adsorption capability approached 184.5 mg g−1. Optimum pH was 4.5. The mechanism of adsorption was investigated using kinetic, isotherm and thermodynamic models. The adsorption kinetic data were described well by a pseudo second‐order model with R 2 of 0.997. There was a negative ΔG (−17.98 kJ mol−1) and positive ΔH (13.58 kJ mol−1). HCl solution (1.0 mol l−1) could achieve an elution rate of 100%. The experimental data were well fitted by the Thomas model with R 2 of 0.9826. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.

In this work, two newly sensitive and selective Al(III)-modified carbon paste electrodes (MCPEs) were developed based on diphenylcarbazone (DPC) modifier mixed with tricresyl phosphate plasticizer and either graphite powder (electrode I) or graphite powder mixed with graphene (electrode II). The potentiometric performance characteristics of the two electrodes were scrutinized and discussed. The proposed sensors showed a high electrochemical response in the linear concentration range of 1.0 × 10−6 to 1.0 × 10−2 mol L−1 with a good Nernstian slopes of 20.12 ± 0.30 mV decade−1 and 20.63 ± 0.66 mV decade−1 and limits of detection of 9.0 × 10−7 and 8.5 × 10−7 mol L−1 for electrode (I) and electrode (II), respectively. Both electrodes showed a fast response time and reasonable thermal stability. The potentiometric response of the DPC-based electrodes was independent on the pH of the tested solutions in ranges of 2.5–5 and 2.5–5.5 for electrode (I) and electrode (II), respectively. The two electrodes can be also used in partially non-aqueous medium containing up to 20% (v/v) acetone or methanol with no significant changes in the working concentration ranges or the slopes. The proposed electrodes showed fairly good discriminating ability toward Al(III) ions in comparison with many other metal ions. The electrodes were applied successfully for Al(III) ions determination in drainage water, spiked tap water and pharmaceutical preparation samples. Furthermore, the electrode surfaces were characterized using energy-dispersive X-ray (EDX) and scanning electron microscopic (SEM) as surface characterization techniques and Fourier Transform Infrared (FT-IR) technique to confirm the interaction between Al(III) and DPC.

  相似文献   

17.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

18.
Yin  Xin  Li  Jie  Zhang  Guojie  Gu  Hao  Ma  Qing  Wang  Shumin  Wang  Jun 《Journal of Thermal Analysis and Calorimetry》2019,135(4):2317-2328

N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole was readily synthesized from 4,5-dicyano-2H-1,2,3-triazole. Its crystal structure was obtained for the first time and its crystalline density in 296 K was 1.729 g cm−3. It shows high nitrogen and oxygen content up to 77.6%, high calculated solid heat of formation (564 kJ mol−1), and superior detonation pressure and detonation velocity (D = 8619 m s−1, P = 30.8 GPa). This new hydrogen-absent explosive shows high impact and friction sensitivities (IS: 1.25 J, FS: 32 N), which is lower than commercial primary explosive 2-diazonium-4,6-dinitrophenol (DDNP) (IS: 1 J, FS: 5 N). The relationship between intermolecular interaction and sensitivity as well as thermal stability of the title compound was investigated by Hirshfeld surface analysis and fingerprint plot. Its thermodynamic properties were studied by non-isothermal kinetic methods based on the results of differential scanning calorimeter. It is interesting that apparent activation energy (Ea) at Tp1 (210.89–214.17 kJ mol−1) is higher than those at Tp2 (133.90–134.87 kJ mol−1). In addition, gaseous product of this new energetic compound was analyzed by the rapid scanning Fourier transform infrared spectroscopy from 20 to 200 °C and its detonation products was theoretically predicted. Based on the decomposition products, its decomposition mechanism was discussed under inert atmosphere. It is undoubted that these significant physicochemical properties make N-trinitromethyl-4,5-dicyano-2H-1,2,3-triazole a potential hydrogen-absent primary explosive.

  相似文献   

19.
This study investigates the curing of epoxidized soybean oil (ESO) using dicyandiamide (DICY) and combinations of DICY with several accelerators as curing agents. The differential scanning calorimetry (DSC) results indicated that carbonyldiimidazole (CDI) is a highly efficient accelerator for the ESO‐DICY curing system. CDI accelerated ESO‐DICY curing system can gel within a short period of 13 min at 190 °C. The activation energies of the ESO‐DICY curing systems with and without CDI are 95 and 121 kJ mol?1, respectively. Similar acceleration effect was observed in the ESO‐diglycidyl ether of biphenyl A (DGEBA) blending formulations. When the molar part of the glycidyl epoxy groups of DGEBA was equal to the internal epoxy groups of ESO in the mixture, gelation of the DICY curing system accelerated by CDI was achieved in 3 min at 160 °C. Furthermore, the DSC results with FTIR analysis suggest that the stoichiometric curing molar ratio was 3 ESO epoxy units per 1 DICY molecule. Two epoxy units reacted with DICY to give secondary alcohols, while the other one linked to the nitrile group. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 375–382  相似文献   

20.
The vaporization enthalpies and liquid vapor pressures from T = 298.15 K to T = 400 K of 1,3,5-triazine, pyrazine, pyrimidine, and pyridazine using pyridines and pyrazines as standards have been measured by correlation-gas chromatography. The vaporization enthalpies of 1,3,5-triazine (38.8 ± 1.9 kJ mol−1) and pyrazine (40.5 ± 1.7 kJ mol−1) obtained by these correlations are in good agreement with current literature values. The value obtained for pyrimidine (41.0 ± 1.9 kJ mol−1) can be compared with a literature value of 50.0 kJ mol−1. Combined with the condensed phase enthalpy of formation in the literature, this results in a gas-phase enthalpy of formation, Δf H m (g, 298.15 K), of 187.6 ± 2.2 kJ mol−1 for pyrimidine, compared to a value of 195.1 ± 2.1 calculated for pyrazine. Vapor pressures also obtained by correlation are used to predict boiling temperatures (BT). Good agreement with experimental BT (±4.2 K) including results for pyrimidine is observed for most compounds with the exception of the pyridazines. The results suggest that compounds containing one or two nitrogen atoms in the ring are suitable standards for correlating various heterocyclic compounds provided the nitrogen atoms are isolated from each other by carbon. Pyridazines do not appear to be evaluated correctly using pyridines and pyrazines as standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号