首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Triplet-and singlet-related photoprocesses of pyrene-1-aldehyde (PA) in various solvents have been investigated in detail using 337.1 and 355 nm laser flash photolysis in conjunction with time-correlated determination of fluorescence lifetimes (τF) and steady-state photochemical and absorption-emission spectral measurements. In benzene, the lowest triplet of PA (43 < ET < 46 kcal/mol) has a lifetime of about 50 µs (τT) and displays the absorption maximum at 443 nm with a maximum extinction coefficient (εmax) of 21000 M -1cm-1; the corresponding ketyl radical has a sharp absorption maximum at 428 nm (εmax≥ 25000 M -1cm-1). The quantum yields (φT) of lowest triplet occupation are high in nonprotic solvents (0.6–0.8), decrease in protic solvents (alcohols) as the polarity of the latter is increased, and maintain a complementary relationship with the quantum yields (φF) of fluorescence. Quantum yields (φPC) of loss of PA due to photoreactions in some solvents have also been determined under conditions of steady irradiation at 366 nm; φPC is in the range 0.1–0.2 in electron-rich olefinic solvents such as cyclohexene and tetramethylethylene. These results concerning τF, τT, φF. φT and φPC as well as the effects of 1,2,4-trimethoxybenzene and 2,5-dimethyl-2,4-hexadiene as quenchers for fluorescence, triplet yield, and photochemistry are discussed in the light of possible state orders for PA in polar and nonpolar environments.  相似文献   

2.
Abstract— Higher excited triplet states originating from the lowest triplet state of isoalloxazines by absorption of light with Λ - 600 nm undergo "inverse" intersystem crossing to the singlet manifold [φ( Tn-Sm ) = 8 × 10-3] followed by rapid internal conversion and "normal" fluorescence S1-S0 with Λm= 540 nm.  相似文献   

3.
Triplet formation quantum yields (Φτ) of psoralen in a set of 17 pure solvents ranging from n -hexane to water and in dioxane: water mixtures were obtained by nanosecond laser flash photolysis. The triplet yield increases with solvent polarity. The extremum values are 0.009 and 0.545 in n -hexane and water, respectively. Good correlations of the experimental Φτ values with empirical "polarity" scales (Dimroth/Reichardt's ET [30], Kamlet/Taft's solva-tochromic parameters β, and α, and Swains acity/basity AS/BS) were obtained: Ln(φT-1 - 1) = 8.86 - 0.143ET(30) Ln(φT-1 - 1) = 4.40 - 2.34τ - 1.70α Ln(φT-1 - 1) = 4.65 - 3.72As - 1.12Bs The results are discussed in terms of the sensitivity of psoralen triplet quantum yield to solvent polarity and hydrogen-bonding abilities.  相似文献   

4.
Abstract— The characteristics of the fluorescence and phosphorescence emission of 2-amino-4 (3H) pteridinone (or pterin) in aqueous solutions are pH dependent. The room temperature fluorescence quantum yield is low and is maximum at pH = 10 (φF∼ 0.057). The 77K phosphorescence emission consists of two overlapping emissions originating from τ* triplet states. In agreement with low temperature results, the 353nm laser flash photolysis makes it possible to detect at pH 9.2, two transient triplet absorptions (τ1∼ 0.3 μs and τ2∼ 2.3 μs). The longer lived triplet is characterized by φTM∼ 0.20 and ∼ (550nm) = 2000 M −1 cm−1. It reacts with the solvent forming the semireduced pterin with a quantum yield φR∼ 0.06. The photosensitizing properties of pterin have been studied by laser flash spectroscopy and steady state irradiations. Photoreactions implying singlet oxygen formation are shown to occur. Laser flash spectroscopy indicates that the pterin triplet is reduced by amino acids and nucleic acid bases. Corresponding bimolecular reaction rate constants have been measured.  相似文献   

5.
Abstract— Several porphyrin esters used as models for polystyrene-bound porphyrins have been prepared and their excited states have been studied by laser flash photolysis, IR phosphorescence of singlet molecular oxygen, O2(1Δg), and steady-state fluorescence. The photophysical properties of the porphyrin esters in solution are affected by the presence of nitro group(s) in the chain. In this case, an important decrease in φf, φT and φδ (to ca 0.7–0.4 of the value for the parent dimethyl ester) is observed. This is mainly due to intramolecular electron-transfer quenching [by the nitro group(s)] of the first excited singlet state of the porphyrin. The thermodynamic feasibility of this deactivation pathway has been confirmed polarographically. Quenching of the porphyrin triplet state and of O2(1Δg) by the nitro groups is negligible. The present conclusions explain also the results obtained previously for the photooxidation of bilirubin sensitized by the parent insoluble polystyrene-bound porphyrins. In that case the photooxidation rates were correlated directly with the quantum yield of O2(1Δg) production by the sensitizer. The consequences of these results for the use of polystyrene-bound porphyrins in sensitized photooxidation processes are discussed.  相似文献   

6.
Abstract— Low-temperature (and some room temperature) absorption and emission, fluorescence and phosphorescence, data including quantum yields and lifetimes have been obtained from the title pyrimidine bases as a function of the nature of the solvent environment. Modest vibrational resolution has been observed for the first time in the absorption spectra, particularly for thymine and uracil. The excitation spectra also show structure. The quantum yields of fluorescence (φF) and phosphorescence are independent of the excitation wavelength. Thymine, thymidine and uracil have profoundly different photophysical properties in polar-aprotic vs polar-protic solvents. The N, N-dimethyl substitution of thymine and uracil produces photophysical changes comparable to the solvent change for the unsubsti-tuted bases. The species involved in the emission processes is the keto (lactam) form. It is probable that 1,3(n,π*) state(s) has(have) changed order relative to a lowest 1(π,π*) state as a consequence of both the solvent change and N, N-dimethyl substitution. The lowest triplet state is assigned as 3(n π*). We propose that an important factor contributing to the previously reported excitation wavelength dependence of φF and φT1isc) for nucleic-acid components is the equilibrium coexistence of H-bonded and non-H-bonded forms each having different photophysical properties. Consideration is given of the impact of the significantly different photophysical properties of nucleic-acid bases as a function of the nature of the solvent upon the photochemical properties.  相似文献   

7.
Abstract— Photophysical properties of two chlorin type molecules (CHLI) and (CHLII) were investigated in different solvents. Quantum yields of fluorescence φF of S, → T, intersystem crossing φT, and of singlet oxygen (1Δg) formation φΔ, as well as the Stern-Volmer constants for the quenching of the S, states by oxygen and the bimolecular rate constants of quenching of 1Δg by the chlorins were measured. The values of φT and φΛ can be given as 0.57 and 0.58 for CHLI and 0.69 and 0.58 for CHLII. The values of the fluorescence quantum yields, the strong absorption of the chlorins in the red (Λ > 630 nm) and the high values of the quantum yields for 1Δg formation recommend the chlorin derivatives as potential markers and photosensitizers for tumor therapy.  相似文献   

8.
Abstract. Pulsed laser photolysis at 347nm has been used to study the transient spectroscopy of alloxazine, lumichrome, lumiflavin, and riboflavin in acidic (pH 2.2) aqueous solution and in ethanol. Intersystem crossing quantum yields (φISC) were determined by a modification of the comparative laser excitation method which utilizes the variation of the triplet yield with intensity in conjunction with a kinetic model for the various photophysical and photochemical processes occurring during the pulse. Fluorescence quantum yields and lifetimes are also reported. Correction for quenching of the excited singlet state by H+ ions shows that, in neutral aqueous solution, intersystem crossing for flavins is an efficient process (φISC˜ 0.7) which, in conjunction with fluorescence, accounts for the fate of all absorbed photons. For alloxazine (φISC˜ 0.45) and lumichrome (φISC˜ 0.7) the results are more difficult to interpret owing to interconversion between alloxazine and isoalloxazine structures in the singlet excited state. For all four compounds, the quantum yield of products derived from the singlet excited state is estimated as ˜0.04. There is evidence of biphotonic product formation at high laser energies. In ethanol, where φISC for lumichrome is about twice that of lumiflavin, internal conversion between the excited singlet and ground states appears to be a significant process. Complete triplet-triplet absorption spectra in the region 260–750nm are reported. For lumichrome at pH 2.2 there is spectral evidence for isomeric triplet states which appear to be in equilibrium.  相似文献   

9.
Abstract Merocyanine derivatives were prepared by structural alterations at the barbituric acid or chalcogenazole moieties. The photophysical properties of the dyes were markedly influenced by the presence of selenium rather than sulfur as a substituent at position 2 of the barbiturate. In methanol, quantum yields of both triplet state (φτ) and singlet oxygen sensitization (φΔ) were increased by over an order of magnitude, with a concomitant decrease in fluorescence, when selenium was present in the molecule. Photoisomerization, one of the dominant deactivation pathways in the sulfur- or oxygen-containing analogues, was completely absent in the selenium-containing derivatives. Efficient triplet state formation was observed for selenium-containing derivatives incorporated into L1210 cells by diffuse reflectance laser flash photolysis. Cytotoxicity studies, camed out using clonogenic assays on L1210 leukemia cells, showed a good correlation with φτ and φΔ, measured in solution. Experimental evidence provided by this paper supports a triplet state-, and probably singlet oxygen-, mediated phototoxic mechanism. Photoisomerization or singlet state mechanisms can be discounted.  相似文献   

10.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

11.
The singlet oxygen quantum yield (φ1o2) of 11 purified fluorescein derivatives was determined by reaction with singlet oxygen acceptors in aqueous and ethanolic solutions; in both solvents φ1o2 was enhanced with increasing halogenation. Tryptophan and 2,2,6,6-tetramethylpiperidone were found to be unadapted for the determination of φ1o2, in our systems; however, the use of 9.10-dipropionic anthracene acid andp-nitrosodimethylaniline in conjunction with imidazole derivatives was suitable for 1O2 detection in water. Both methods lead to results in excellent agreement. As in ethanol. φ1o2, was equal to the triplet state quantum yield (φT), the comparison between the two solvents showed that φT in water was greater than in ethanol. The comparison between our values obtained with polychromatic light with published data obtained with monochromatic light suggests that the triplet quantum yield of fluorescein derivatives is wavelength independent.  相似文献   

12.
Abstract— The photophysics of purinic compounds (purine, 6-meth-ylpurine, 6-aminopurine [adenine], 6-chloropurine, 6-methoxypurine) and theophylline in acetonitrile solution were studied by pulsed laser-induced optoacoustic spectroscopy (LIOAS) exciting at 266 nm. The effect of O2, Xe and MnCl2 on the photophysical behavior of these compounds was studied; as well, the formation quantum yield of purine and 6-methylpurine triplet states were determined, with φT= 0.88 ± 0.03 for both compounds. Multiphotonic and depletion processes were observed at high laser fluences. In order to explain this behavior, theoretical UV-visible absorption electronic spectra from both the S0 and S1 state have been calculated for purines and theophylline by using the semiempirical PM3 and ZINDO/S methods.  相似文献   

13.
Abstract— Nanosecond laser flash photolysis and pulse radiolysis have been used to generate and characterise the triplet state, and semioxidised and semireduced radicals of haematoporphyrin, and three 0 -acyl compounds derived from it (the monoacetate, the diacetate and the disuccinate).
After 347 nm irradiation in water containing 2% Triton X-100, haematoporphyrin forms the triplet state (φT= 0.92) and photoionises monophotonically (φI= 0.03). For the O -acyl derivatives, φT approaches unity and photoionisation is reduced. In acetone the triplet yield of all four compounds are close to unity. The difference and corrected spectra for the triplet species are presented and decay rates ( k 1˜104s-1) and oxygen quenching constants ( k Q˜1.5times109 M -1s-1) for the triplet state have been measured. The difference and corrected spectra for the semi-reduced species in methanol and semi-oxidised species in aqueous Triton X-100 are presented.
The photophysical characteristics in fluid solution of haematoporphyrin and its 0 -acyl derivatives are rather similar to those previously recorded for other photosensitising porphyrins.  相似文献   

14.
Abstract— –Problems associated with the protolytic equilibria of thionine and related molecules in their lowest excited electronic states were investigated. The theoretical arguments are based on semi-empirical SCF MO (CI) calculations for the π-electronic system of these molecules; all singly excited configurations were included in the CI. The results indicate that the basic form of thionine in its ground, first excited singlet and lowest triplet state is protonated at the heterocyclic N atom. The difference of the p K values of these three states can be explained in terms of the calculated charge densities. The photochemical reactivity of the lowest triplet of the acidic form of thionine (3TH22+) differs greatly from that of the lowest triplet of the basic form (3TH+). Some arguments for the assignment of nπ* character to 3TH22+ and ππ* character to 3TH+ are advanced.  相似文献   

15.
Abstract— The spectral characteristics of the emission observed from tropolone, α-methoxy-tropone and colchicine in EPA at 77 K are reported. Luminescence polarization, lifetime, quantum yield and energy transfer experiments provide evidence that the luminescence observed is S1→ S0 fluorescence and that the lowest excited singlet state is π, π* The two compounds α-methoxy-tropone and colchicine have been found to exhibit dual luminescence. No phosphorescence could be detected in these three molecules. The photophysical processes for each molecule are discussed and their respective energy level diagrams are also suggested.  相似文献   

16.
Abstract Triplet absorption spectra, extinction coefficients (ɛT), decay rates ( K 1), oxygen quenching rates (kq) and intersystem crossing yields (φT) for 3-carbethoxypsoralen (3-CPs). 8-methoxypsoralcn (8-MOP) and 5-methoxypsoralen (5-MOP) in methanol are reported. For 8-MOP and 3-CPs corresponding values are also reported with water as the solvent. Some photophysical data are also reported for 5-MOP in water, but ɛT and φT were not obtained.
The phosphorescence spectra for these furocoumarin derivatives in ethanol at 77 K are reported together with the corresponding lowest triplet energy and lifetime. The values of the various photophysical properties obtained are compared with values reported by previous workers.  相似文献   

17.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

18.
The laser flash photolysis of indole at 265 nm in the presence of glycine, proline and hydroxy proline was studied. The relative yields of c aq, triplet state, and indole cation radical were determined in the absence and in the presence of the amino acids. The yields were determined as a function of laser intensity and the values at very low intensity were compared with the fluorescence quenching results. It was concluded that in these conditions the photoionization of indole occurs via the fluorescent state. From the curves of triplet yield vs laser intensity, the triplet quantum yield extrapolated at low laser intensity was obtained, φr = 0.55 φ 0.05, relative to the literature value of 0.15 for φeag. This gives φFeaq= 1.0 ± 0.1 at room temperature. When proline and hydroxy proline were used as singlet quenchers, the yield of In was greater than the yield of caq. This was considered as evidence that a fraction of the quenching processes leads to complete electron transfer from indole to the amino acids.  相似文献   

19.
Abstract— The triplet absorption spectra, lifetimes, extinction coefficients, eTT, and intersystem crossing quantum yields to the lowest triplet T1, øT1, of thymidine, thymidine monophosphate, uridine and uridine monophosphate, have been determined in various solvents at 300 K.
The effect of H-bonding on øT1, of these nucleosides and nucleotides and also of uracil has been determined and discussed. This effect allows, an ordering of l,3 n, π* and 1,3 π, π* states in protic and aprotic solvents.  相似文献   

20.
Abstract— In bidistilled water, 4-thiouridine (4TU) exhibits a weak unusual luminescence, the quantum yield of which is 3 × 10-4 at 25°C. The excitation spectrum corresponds well to the 4TU absorption spectrum. The emission lies at longer wavelengths (Λmax 550 nm) than the 4TU phosphorescence observed at 77 K (Λmax, 470–480 nm). From the emission signal obtained after an excitation flash of 3 ns half-width, an "apparent" rate constant for the radiative deactivation process, shorter than 5 × 106 s, can be inferred. The 300 K emission is efficiently quenched by halides and by oxygen: quenching involves a long-lived intermediate (⋍ 200 ns).
Clearly the emissive state X is populated through the S0-S1 electronic transition π→π* of 4TU. The nature of X cannot be unambiguously determined: it cannot be an excimer but can be either the 4TU triplet state or another chemical state distinct from the 4TU excited singlet or triplet states.
An interesting finding is that the 300 K emission and the ability of 4TU to photoreact are related: they are quenched with the same efficiency by halide anions. This indicates that quenching occurs at the same long-lived intermediate species , which is either a precursor of the emitter or the emitter itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号