首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

2.
3.
Liquid-crystalline polybutadiene-diols (LCPBDs) with the comb-like architecture were synthesized by reaction of a LC thiol with the double bonds of telechelic HO-terminated polybutadiene (PBD). LCPBDs with various initial molar ratios of thiol to double bonds of PBD, R0, in the range from 0.15 to 1, were prepared by the radical reaction at temperature 60 °C for 48 h. The experimentally obtained degree of modification, Re, after the reaction and purification, was determined from elemental analysis - from the amount of sulphur bounded in LCPBDs, GPC and from 1H NMR spectra. The physical properties were investigated by differential scanning calorimetry and dynamic mechanical spectroscopy. With increasing Re ratio the glass transition temperature of LCPBDs, Tg, increases from ∼ − 45 °C (neat PBD) to ∼20 °C (Re ∼ 0.5). LC transition starts at Re ∼ 0.27 (the transition temperature Tm ∼ 27 °C). With increasing Re temperature Tm increases and for Re ∼ 0.5 reaches the value Tm ∼ 74 °C; at the same time also the change in enthalpy at LC transition increases. The LC transition could be detected also by the dynamic mechanical spectroscopy; especially shape and position of mechanical functions on frequency and free volume parameters strongly depend on degree of modification.  相似文献   

4.
A practical investigation of frictional heating effects in conventional C18 columns was undertaken, to investigate whether problems found for sub-2 μm columns were also present for those of particle size 3 μm and 5 μm and different internal diameter. The influence of a water bath, a still air heater, and a forced air heater on performance was investigated. Heating effects were substantial, with a decrease in k of almost 15% for toluene over the flow rate range ∼0.4–2.3 mL/min with a 15 cm × 0.46 cm ID column packed with 3 μm particles. Heating effects on retention increased with increasing solute k, with increase in the column ID, with decrease in the column particle size, and with decrease in the set column oven temperature. While the water bath minimised axial temperature gradients and thus its effect on k, radial temperature gradients were potentially serious with this system, especially at high mobile phase velocity, even with columns containing 5 μm particles. In contrast to the effects of axial temperature gradients in 4.6 mm columns, very little difference in Van Deemter plots was noted between the three different thermostats with 2 mm ID columns, even when 3 μm particles were used. However, the efficiency of 2 mm columns for peaks of low or moderate k (k < 4) can be compromised by the extra dead volume introduced by the heating systems, even with conventional HPLC systems with otherwise minimised extra column volume.  相似文献   

5.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

6.
A novel polyimide (PI) based on 2,6-bis(p-aminophenyl)-benzo[1,2-d;5,4-d′]bisoxazole has been synthesized via a conventional two-stage procedure with bis(ether anhydrides) (HQDPA). The intermediate poly(amic acid) had inherent viscosities of 1.70 dl/g and could be thermally converted into light yellow polyimide film. The resulted polyimide showed excellent thermal stability, and the glass transition temperatures (Tg) were above 283 °C, the 5% weight loss temperature of the polymer was at 572 °C in N2. The thermal degradation of the polyimide was studied by thermogravimetric analysis (TGA) in order to determine the actual reaction mechanisms of the decomposition process. The activation energy of the solid-state process was determined using Flynn-Wall-Ozawa method, which does not require knowledge of the reaction mechanism, which resulted to be 361.36 kJ/mol. The activation energy of different mechanism models and pre-exponential factor (A) were determined by Coats-Redfern method. Compared with the value obtained from the Ozawa method, the actual reaction mechanism obeyed nucleation and growth model, Avrami-Erofeev function (A3) with integral form g(X) = [−ln(1−X)]3.  相似文献   

7.
The thermal and rheological characterizations of seven random, low molecular weight (Mn ≅ 9500 g mol−1), H2N-ended polyethersulfone/polyetherethersulfone (PES/PEES) copolymers, at various PES/PEES ratios, were performed. The glass transition temperatures (Tg) were determined by DSC. Degradations were carried out in a thermobalance, under flowing nitrogen, in dynamic heating conditions from 35 °C to 650 °C. The initial decomposition temperatures (Ti) and the half decomposition temperatures (T1/2) were directly determined by TG curves, while the apparent activation energies of degradation (Ea) were obtained by the Kissinger method. In addition, the complex viscosities (η) of the molten polymers were determined in experimental conditions of linear viscoelasticity. Tg, Ea and η values increased linearly with PES% content, while Ti and T1/2 values showed opposite behaviour. In every case both PES and PEES homopolymers felt outside linearity. The results obtained are discussed and interpreted, and compared with those of corresponding Cl-ended copolymers previously studied.  相似文献   

8.
Some random low molar mass (Mn ≈ 9000 g mol−1) poly(ethersulfoneethersulfone)/poly(ethersulfoneethersulfonebiphenylsulfone) P(ESES)/P(ESESBS) copolymers, with various (25%, 50% and 75%) ESESBS units contents, were synthesized to obtain compounds with higher chain rigidity than PES. The thermal characterization of the prepared copolymers, as well as that of corresponding P(ESES) and P(ESESBS) homopolymers, was performed, and all investigated parameters showed strong dependence on polymer composition.The glass transition temperature (Tg) was calorimetrically determined by DSC technique, and the obtained values increased linearly as function of ESESBS units percentage, thus indicating an increasing chain rigidity.Degradations were carried out in dynamic heating conditions, from 35 °C to 700 °C, in both flowing nitrogen and static air atmosphere, and the characteristic parameters of degradation were determined in order to draw useful information about the overall thermal stability of the studied compounds. The apparent activation energy of degradation (Ea) was obtained by the Kissinger method, and the values found increased linearly as a function of ESESBS content, while the temperature values at 5% mass loss (T5%) showed an opposite linear trend. The results are discussed and interpreted.  相似文献   

9.
The crystallization kinetics of polypropylene (PP) with hyperbranched polyurethane acrylate (HUA) being used as a toughening agent was studied by isothermal and nonisothermal differential scanning calorimetry (DSC). The presence of a small amount of HUA (2-7%) remarkably influences the crystallizability of PP. An addition of HUA leads to an increase in the number of effective nuclei, thus resulting in an increase of crystallization rate and a stronger trend of instantaneous three-dimensional growth. For isothermal crystallization, Avrami exponents were determined to be about 2.97 for pure PP and 3.51 for the HUA/PP blend containing 5% HUA (HUA-PP). The half crystallization time (t1/2) of pure PP was measured to be 8.43 min, while being 3.28 min for HUA-PP at the crystallization temperature of 132 °C. The nonisothermal crystallization kinetics of HUA/PP blends was analyzed by Avrami, Ozawa and Kissinger methods. It has also been proved that an addition of HUA could increase the crystallization rate of PP. Moreover, the crystallization activation energies of pure PP and HUA-PP were estimated by Kissinger and Friedman methods.  相似文献   

10.
The use of asymmetrical flow field-flow fractionation (AsFlFFF) in the study of heat-induced aggregation of proteins is demonstrated with bovine serum albumin (BSA) as a model analyte. The hydrodynamic diameter (dh), the molar mass of heat-induced aggregates, and the radius of gyration (Rg) were calculated in order to get more detailed understanding of the conformational changes of BSA upon heating. The hydrodynamic diameter of native BSA at ambient temperature was ∼7 nm. The particle size was relatively stable up to 60 °C; above 63 °C, however, BSA underwent aggregation (growth of hydrodynamic diameter). The hydrodynamic diameters of the aggregated particles, heated to 80 °C, ranged from 15 to 149 nm depending on the BSA concentration, duration of incubation, and the ionic strength of the solvent. Heating of BSA in the presence of sodium dodecyl sulfate (1.7 or 17 mM) did not lead to aggregation. The heat-induced aggregates were characterized in terms of their molar mass and particle size together with their respective distributions with a hyphenated technique consisting of an asymmetrical field-flow fractionation device and a multi-angle light scattering detector and a UV-detector. The carrier solution comprised 8.5 mM phosphate and 150 mM sodium chloride at pH 7.4. The weight-average molar mass (Mw) of native BSA at ambient temperature is 6.6 × 104 g mol−1. Incubation of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h resulted in aggregates with Mw 1.2 × 106 and 1.9 × 106 g mol−1, respectively. The average radius of gyration and the average hydrodynamic radius of the heat-induced aggregate samples were calculated and compared to the values obtained from the size distributions measured by AsFlFFF. For comparison static light scattering measurements were carried out and the corresponding average molar mass distributions of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h gave aggregates with Mw 1.7 × 106 and 3.5 × 106 g mol−1, respectively.  相似文献   

11.
Oxygenation of various aldimines with tetrabutylammonium monoperoxysulfate produced the corresponding E- or a mixture of E- and Z-oxaziridines with very high yields (?90%) and good to excellent selectivities (75-100%) within 20 min to 10 h in CH3CN at room temperature (∼25 °C). The E/Z isomer ratio critically depends on the stereo-electronic nature of the substituents in the oxaziridines, solvent, and the presence of Lewis acids and bases.  相似文献   

12.
The reaction between lanthanum oxide and strontium carbonate was studied non-isothermally between 350 and 1150 °C at different heating rates, intermediates and the final solid product were characterized by X-ray diffractometry (XRD). The reaction proceeds through formation of lanthanum oxycarbonate La2O(CO3)2, lanthanum dioxycarbonate La2O2CO3, and non-stoichiometric strontium lanthanum oxide La2SrOx (x = 4 + δ). La4SrO7 was found to be the final product which begins to form at ∼700 °C. Li+ doping enhances the formation of the final product as well as commencement of the reactions at lower temperatures.  相似文献   

13.
Activation energies for nitrocellulose (NC) degradation have been determined from Arrhenius plots constructed using first-order rate constants measured at 40, 50 and 60 °C. The rate constants were obtained by monitoring the absorbance (A) at a wavelength in the visible region of an anthraquinone dye dispersed in NC thin films. The dye acts as a stabilizer and is slowly depleted as a result of its reaction with NOx from the breakdown of the nitrate ester groups on NC. The data produced two linear regions in the first-order plots of ln(A0/At) vs aging time. The first-region is attributed to the reaction of the dye with NOx desorbed from the NC surface. The activation energy (∼73.5 kJ mol−1) is in line with that found for NOx surface desorption processes. The second linear region is thought to be due to the reaction of NOx from the breakdown of the nitrate ester groups on the NC molecule. The activation energy (∼104.0 kJ mol−1) is consistent with that for nitrate ester hydrolysis. The use of UV-visible spectroscopy has in this way made it possible to monitor the degradation of NC non-destructively without the need for stabilizer extraction and analysis.  相似文献   

14.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

15.
Crystalline TiO2 nanowire-nanoparticle hetero-structures were successfully synthesized from titanium foils by using a simple thermal annealing method with the aid of CuCl2 at the atmospheric pressure. Nanowires were grown from Ti foils by simply annealing Ti foils at 850 °C. Then, TiCl4 was delivered to TiO2 nanowires so as to precipitate TiO2 nanoparticles on nanowire surfaces. At 750 °C reaction temperature, nanoparticles of tens of nanometers in diameter were well distributed on pre-grown nanowire forests. Nanoparticles were likely to be precipitated by TiCl4 decomposition or oxidation and that require high temperatures above ∼650 °C. Electron microscopy, X-ray diffraction, and UV-vis spectroscopy analyses show they have the rutile polycrystalline structure with a slightly enlarged bandgap compared to that of bulk TiO2. The influence of key synthesis parameters including reaction temperature, reaction time, and quantity of supplied materials on the incorporating nanoparticles was also systematically studied. The optimum reaction condition in the present paper was identified to be 750 °C annealing with repetitive 20 min reactions. A higher reaction temperature yielded larger diameter particles, and higher loading of Ti produced dense particles without changing the particle size. Finally, this method could be utilized for synthesizing other metal oxide nanowires-nanoparticle hetero-structures.  相似文献   

16.
The kinetics of pyrolysis of a micro-crystalline cellulose in nitrogen were studied from TGA and DTG data, obtained with two different modes of heating: a dynamic mode at constant heating rates between 1 and 11 °C/min and an isothermal mode at various temperatures, kept constant between 280 and 320 °C. In isothermal mode, it appeared very clearly that the mass depletion shows a sigmoid profile characteristic of an auto-accelerated reaction process. This behaviour is consistent with kinetics of nuclei-growth, well represented by the models of Avrami-Erofeev (A-E) and of Prout-Tompkins (P-T) type. All the other kinetic models commonly applied to the thermal decomposition of solids revealed unsatisfactory. The TGA and DTG data were, thus, found ideally simulated from a reaction scheme consisting in two parallel reactions, termed 1 and 2, each one described by the kinetic law: dx/dt=−AE/RTxn(1−0.99x)m. Reaction 1 is related to the bulk decomposition of cellulose and is characterised by the set of parameters: E1=202 kJ/mol; n1=1; m1=0.48. Reaction 2 is related to the slower residual decomposition, which takes place over approximately 350 °C and affects only 16% by weight of the raw cellulose. With m2 constrained to 1, the optimised parameters of this reaction were: E2=255 kJ/mol; n2=22. Finally, the proposed model allowed to correctly fit not less than to 10 sets of ATG-DTG data, isothermal and dynamic.  相似文献   

17.
A block copolymer (PS-b-poly(l-Glu)) composed of polystyrene and poly(l-glutamic acid) was used as a stabilizer for dispersion polymerization of styrene. When dispersion polymerization of styrene was conducted at 70 °C in 80% dimethylformamide-water with 0.5 wt% PS-b-poly(l-Glu), spherical polystyrene particles with Dn = 0.72 μm and narrow size distribution were obtained. Whereas AIBN concentration did not have any effects on particle size, molecular weight of the polystyrene particles was strongly dependent on the initiator concentration. As concentration of the PS-b-poly(l-Glu) increased from 0.2 to 1.0 wt%, particle size decreased from Dn = 0.91 to 0.69 μm with keeping surface area occupied by one poly(l-glutamic acid) chain about = 50 nm2. On the other hand, an increase in initial concentration of styrene from 2 to 20 wt% caused an increase in particle size from Dn = 0.48 to 1.36 μm and a decrease in surface area per poly(l-glutamic acid) block from = 91 to 45 nm2. Colloidal stability of the polystyrene particles in aqueous solution was responsive to pH due to the surface-grafted poly(l-glutamic acid). For dispersion polymerization of styrene, the PS-b-poly(l-Glu) functions as both a stabilizer and a surface modifier.  相似文献   

18.
Single crystals of a new compound, BaBi2B4O10 were grown by cooling a melt with the stoichiometric composition. The crystal structure of the compound has been solved by direct methods and refined to R1=0.049 (wR=0.113) on the basis of 1813 unique observed reflections (|Fo|>4σ|Fo|). It is monoclinic, space group P21/c, a=10.150(2), b=6. 362(1), c=12.485(2) Å, β=102.87(1)o, V=786.0(2) Å3, Z=4. The structure is based upon anionic thick layers that are parallel to (001). The layers can be described as built from alternating novel borate [B4O10]8− chains and bismuthate [Bi2O5]4− chains extended along b-axis. The borate chains are composed of [B3O8]7− triborate groups of three tetrahedra and single triangles with a [BO2] radical. The borate chains are interleaved along the c-axis with rows of the Ba2+ cations so that the Ba atoms are located within the layers. The layers are connected by two nonequivalent Ba-O bonds as well as by two equivalent Bi-O bonds with bond valences in the range of 0.2-0.3 v.u.Thermal expansion of BaBi2B4O10 studied by high-temperature X-ray powder diffraction in the temperature range of 20-700 °C (temperature step 30-35 °C) is highly anisotropic. While the b and c unit-cell parameters increase almost linearly on heating, temperature dependencies of a parameter and β monoclinic angle show nonlinear behavior. As a result, on heating orientation of thermal expansion tensor changes, and bulk thermal expansion increases from 20×10−6 °C−1 at the first heating stage up to 57×10−6 °C−1 at 700 °C that can be attributed to the increase of thermal mobility of heavy Bi3+ and Ba2+ cations.  相似文献   

19.
The compound CeAu0.28Ge1.72 crystallizes in the ThSi2 structure type in the tetragonal space group I41/amd with lattice parameters a=b=4.2415(6) Å c=14.640(3) Å. CeAu0.28Ge1.72 is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at ∼8 K with estimated magnetic moment of 2.48 μB/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at ∼8 K. The electronic specific heat coefficient (γ) value obtained from the paramagnetic temperature range 15-25 K is∼124(5) mJ/ mol K2. The entropy change due to the ferromagnetic transition is ∼4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions.  相似文献   

20.
Sequential treatment of ω-bromoalkyl triflates with an alkynyllithium at 0 °C followed by addition of a second alkynyllithium and NaI and heating the reaction mixture provides a simple one-pot access to unsymmetrical diynes in good yields. These diynes may be transformed stereoselectively into diene pheromones such as (Z,Z)- and (E,Z)-3,13-octadecadienyl acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号