首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ageing of filled and cross-linked ethylene propylene diene elastomer (EPDM) has been studied under accelerated UV irradiation (λ ≥ 290 nm) at 60 °C, thermal ageing at 100 °C and in nitric acid vapours for different time intervals. Hardness measurements were performed. DSC-thermoporosimetry was used to estimate the mesh size distribution and cross-linking densities for each ageing. The development of functional groups was monitored by ATR spectroscopy. An increase in oxidation with exposure time after the different types of ageing was observed. The thermal stability of EPDM was assessed by TGA and evolved volatile gases were identified using FTIR spectroscopy.  相似文献   

2.
Catalysts constituted by neodymium versatate, diisobutylaluminium hydride and t-butyl chloride were used in this work. After their synthesis, they were aged at 40 °C for 48 h. Afterwards, they were maintained at 10 °C for more 5, 15, 40, 80, 160 and 250 days and finally the aged catalysts were evaluated in butadiene polymerization. The polybutadienes were characterized by size exclusion chromatography (SEC) to determine the molecular weight characteristics and by infrared spectroscopy (FTIR) to determine the microstructure. The aim of this work is to evaluate the effect of ageing time on 1,4 polymerization of butadiene. The results showed that the stereoselectivity of the active sites was not affected by the ageing conditions. However, the catalyst activity increased for long times of ageing.  相似文献   

3.
The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200-300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities (Q/B) of the predominantly quinonoid (Q) and benzenoid peaks (B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.  相似文献   

4.
N-(3-acetylenephenyl)maleimide (3-APMI), was synthesized by reacting 3-aminophenylacetylene (3-APA) with maleic anhydride by the usual two-step procedure that included ring-opening addition to give maleamic acid, followed by cyclodehydration to maleimide. Structure of the monomer was confirmed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), elemental analysis (EA) and mass spectrum (MS). Thermal cure of the monomer was investigated by differential scanning calorimetry (DSC) and FTIR, then processing parameters and cure kinetics parameters were determined. The results showed that the monomer possesses excellent reactivity, whose cure peak temperature was 197.9 °C and cure reaction was almost complete after 4 h cure at 200 °C. Thermal properties of the cured monomer were determined by dynamic mechanical analysis (DMA) and the results show that glass transition temperature (represented by onset temperature of storage modulus) is high up to 460 °C. The results of thermogravimetry analysis (TGA) reveal that the cured monomer possessed excellent thermal stability, whose 10% weight loss temperature (T10%) is 515.6 °C and char yield at 800 °C is 59.1%. All these characteristics make the 3-APMI monomer be an ideal candidate for matrix of thermo-resistant composites.  相似文献   

5.
Thin (60 μm) and thick (250 μm) samples of poly(ether ether ketone) were subjected to radiochemical ageing at 24 kGy h−1 dose rate for doses up to 30.7 MGy at 60 °C in air. FTIR spectrophotometry (hydroxyl and carbonyl build-up), ATR microscopy (oxidation profiles), ammonia gaseous treatment (determination of carbonyl nature), density, DSC (glass transition temperature, cold crystallization and melting point changes), and gel content measurements (crosslinking) were conducted for examination of polymer degradation. Thin samples were shown to undergo principally chain scission process whereas thick ones undergo mainly crosslinking. This difference can be attributed to the kinetic control of oxidation by oxygen diffusion. A mechanistic scheme was proposed from radiochemical yields estimations.  相似文献   

6.
The ageing and thermal degradation of polymer thin films derived from the essential oil of Lavandula angustifolia (LA) fabricated using plasma polymerisation were investigated. Spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy were employed to monitor the optical parameters, thickness and chemical structure of the polyLA films fabricated at various RF powers over a period of 1400 h. The bulk of the degradation under ambient conditions was found to occur within the first 100 h after fabrication. The thermal degradation of the polyLA films was also investigated using the ellipsometry and FTIR. An increase in thermal stability was found for films fabricated at increased RF power levels. Between 200 and 300 °C, the properties indicate that a phase change occurs in the material. Samples annealed up to 405 °C demonstrated minimal residue, with retention ranging between 0.47 and 2.2%. A tuneable degradation onset temperature and minimal residue post-anneal demonstrate that the polyLA films are excellent candidates for sacrificial material in air gap fabrication.  相似文献   

7.
In this work, the thermal degradation of polymethacrylates containing carboxylic groups namely poly(methacryloyloxy butanoic acid), PMBA; poly(methacryloyloxy hexanoic acid), PMHA; and poly(p-methacryloyloxy benzoic acid), PMBeA was investigated by TGA/FTIR. Moreover, in order to shed more light on the reaction pathways during the thermal decomposition of these polymers, an FTIR spectroscopic study of structural changes in the degrading material was performed. By TGA it was observed that PMBA exhibited two well-defined degradation stages at 327 and 450 °C; PMHA presents only one main weight loss at ca. 402 °C although from DTG curve it was noted that the single step degradation was composed by two overlapped peaks located at 414 and 449 °C and a small shoulder at 317 °C; finally PMBeA showed three weight loss regions at 265, 353 and 468 °C. From FTIR analysis of the partially degraded samples it was found that the thermal degradation of these polymers resembled that of polymethacrylic acid, i.e. anhydrides were initially formed and then the modified structure is broken to yield an aromatic structure with phenolic groups. In contrast, the analysis by FTIR of the volatile products from the studied polymers differs notably than those obtained for polymethacrylic acid: β-lactones and γ-lactones were released from PMBA and PMHA, respectively, during its thermal degradation, whereas an ester derivative from benzoic acid evolves from PMBeA probably through depolymerization.  相似文献   

8.
5-Vinyltetrazole (VT)-based polymer is mainly produced by ‘click chemistry’ from polyacrylonitrile due to the unavailability of 5-vinyltetrazole monomer, which usually produces copolymers of VT and acrylonitrile rather than pure poly(5-vinyltetrazole) (PVT). In present work, VT was synthesized from 5-(2-chloroethyl)tetrazole via dehydrochlorination. A series of PVT with different molecular weight were synthesized by normal free radical polymerization. The chemical structures of VT and PVT were characterized by 1H NMR and FTIR. PVT without any doped acid exhibits certain proton conductivity at higher temperature and anhydrous state. The proton conductivity of PVT decreases at least 2 orders of magnitude after methylation of tetrazole. PVT and PVT/H3PO4 composite membranes are thermally stable up to 200 °C. The glass transition temperature (Tg) of PVT/xH3PO4 composite membranes is shifted from 90 °C for x = 0.5 to 55 °C for x = 1. The temperature dependence of DC conductivity for pure PVT exhibits a simple Arrhenius behavior in the temperature range of 90–160 °C, while PVT/xH3PO4 composite membranes with higher H3PO4 concentration can be fitted by Vogel–Tamman–Fulcher (VTF) equation. PVT/1.0H3PO4 exhibits an anhydrous proton conductivity of 3.05 × 10−3 at 110 °C. The transmission of the PVT/xH3PO4 composite membrane is above 85% in the wavelength of visible light and changes little with acid contents. Thus, PVT/xH3PO4 composite membranes have potential applications not only in intermediate temperature fuel cells but also in solid electrochromic device.  相似文献   

9.
Critical overview of literature data on the glass transition temperature Tg of poly(4-vinylphenol) PVPh revealed a large scatter of values ranging between 53 and 194 °C, which can only partially be attributed to molecular-mass effect. The reason could be seen in residual moisture and/or solvent in samples subjected to insufficient or even no drying. Based on selected two thirds of literature data, a regression equation is proposed for the dependence of Tg on 1/Mn. Two samples of commercial PVPh (Mn 11,500; Mw 22,100) and (Mn 19,700; Mw 40,900) were studied by DSC, ATR-FTIR, and SEC methods. A procedure of preparing well defined samples is proposed: PVPh vacuum-dried at 140 °C for 24 h is dissolved in tetrahydrofuran and precipitated in hexane. The precipitate is vacuum-dried at 40 °C for 24 h, weighed into a pierced DSC pan. After final vacuum drying at 140 °C for 24 h, the sample is analyzed. The PVPh samples treated in this way showed Tg of 175.0 °C and 179.6 °C, respectively.  相似文献   

10.
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 °C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 °C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity.  相似文献   

11.
Spruce sulphite cellulose (number average degree of polymerization 620) dissolved in an aqueous solution of 8% (w/w) LiOH*H2O and 12% (w/w) urea was methylated with dimethyl sulphate (DMS). By varying the reaction temperature between 22 and 50 °C, the molar ratio between 9 and 15 mol DMS per mol anhydroglucose unit, and the reaction time from 4 to 24 h, methyl cellulose (MC) with degree of substitution (DS) values in the range of 1.07 and 1.59 was prepared. The chemical structure of MC was analysed by FTIR and 1H NMR spectroscopy. The turbidity (given in nephelometric turbidity units, NTU) of the aqueous solution of MC reached an optimum of 10 NTU for a product obtained with 12 mol DMS/mol AGU at 50 °C. GPC measurements revealed polymer degradation to a certain extent. The intrinsic viscosity and the Huggins constant k of the MC samples increased with increasing DS value. The MC samples possess k values higher than 0.8, indicating association of the polymer chain. The zero-shear viscosity decreased with increase of both temperature and the amount of methylation agent due to the depolymerization. During the heating/cooling cycle (20-90 °C) of the aqueous solutions of MC, it was observed that samples synthesized at 22 °C with DS values lower than 1.3 did not undergo phase separation in aqueous solution. Phase separation hysteresis with a precipitation temperature up to 80 °C was obtained for aqueous solutions of MC with DS values between 1.07 and 1.66 synthesized at higher temperatures. The functionalization pattern determined by GLC of the corresponding partially methylated glucitol acetates is close to randomness and comparable with those of commercial MC samples.  相似文献   

12.
CsAlSi5O12 crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs0.85Al0.85Si5.15O12 composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 °C up to 700 °C, show a significant decrease in expansion above 500 °C. At 500 °C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO4 rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 °C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between −270 and 300 °C and unpolarized spectra between room temperature and 1000 °C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition.  相似文献   

13.
Power compensation differential scanning calorimetry (DSC) has been employed to detect and analyse precipitation reactions in an Al-1.3Mg-0.4Mn and an Al-1.3Mg-0.4Mn-0.07Cu alloy in which very small amounts of precipitate, less than 0.3 at.%, are expected to form. Due to the very small heat effects, baseline instability and drift significantly interfere with the measurements. After repeated experiments and careful baseline correction it is demonstrated that in the Cu containing alloy, ageing at 170 °C causes the appearance of two endothermic effects: for 2 days ageing a small dissolution effect appears at about 230 °C, whilst for 7 and 21 days ageing a dissolution effect peaking appears at about 300 °C. The temperature range of the latter is consistent with S phase dissolution.  相似文献   

14.
Cellulose acetate was successfully modified with caprolacton in an internal mixer at temperatures between 120 and 220 °C, and reaction times between 5 and 45 min in the presence of tin-octoate catalyst. The efficiency of modification and the structure of the product were analyzed by SEC, 1H NMR, and FTIR spectroscopy. Significant modification of cellulose acetate did not occur at low temperatures, below 180 °C. Grafting efficiency increased with increasing temperature and time. The extent of grafting could be estimated from the amount of material extracted from the samples by toluene and by FTIR analysis, from the relative intensity of -CH2- and -CH3 vibrations. The amount of polycaprolacton homopolymer is relatively low at the end of the reaction; the efficiency of grafting is good. Although high temperature and long reaction time favor grafting, considerable degradation of the product occurs under these conditions. Quantitative analysis showed that the average length of grafted oligomeric caprolacton chains is around 3 monomer units. The chains attached to the CA backbone internally plasticize the polymer leading to a considerable decrease of its glass transition temperature.  相似文献   

15.
In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 °C, but this temperature for 18 μm powder is 660 °C. Pure potassium perchlorate has an endothermic peak at 300 °C corresponding to a rhombic-cubic transition, a fusion temperature around 590 °C and decomposes at 592 °C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 °C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.  相似文献   

16.
Fundamental properties of polymethyl acrylate solutions were examined: the reasonable Houwink-Mark-Sakurada relations and the theta temperature (θ) were determined to be 5 °C in toluene. Further, the measurements of intrinsic viscosity for polymethyl acrylate solutions as a function of temperature yielded a thermal transition due to a conformation change at 56 ± 1 °C, irrespective of molecular weight and solvent. An application of the two-parameter theory to such a transition gave a stepwise change of the short-range interaction: K×102=9.5 below 50 °C and 10.3 above 60 °C. This conformation transition is explained on the basis of the steric hindrance of the planar substituent to the main chain above 60 °C.  相似文献   

17.
Cables insulated with plasticized poly(vinyl chloride) were aged in air at temperatures between 80 °C and 180 °C and their conditions were assessed by indenter modulus measurements, tensile testing, infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Electrical testing of oven-aged cable samples was performed in order to relate the electrical functionality during a high-energy line break (HELB) to the mechanical properties and to establish a lifetime criterion. The mechanical data taken at room temperature after ageing could be superimposed with regard to ageing time and temperature. The ageing-temperature shift factor showed an Arrhenius temperature dependence. The jacketing material showed an immediate increase in stiffness (indenter modulus and Young's modulus) and a decrease in the strain at break on ageing; these changes were dominated by loss of plasticizer by migration which was confirmed by IR spectroscopy and DSC. The core insulation showed smaller changes in these mechanical parameters; the loss of plasticizer by migration was greatly retarded by the closed environment, according to data obtained by IR spectroscopy and DSC, and the changes in the mechanical parameters were due to chemical degradation (dehydrochlorination). A comparison of data obtained from this study and data from other studies indicates that extrapolation of data for the jacketing insulation can be performed according to the Arrhenius equation even down to service temperatures (20-50 °C). The low-temperature deterioration of the jacketing is, according to this scheme, dominated by loss of plasticizer by migration.  相似文献   

18.
High temperature degradation of a fluoroelastomer and its nanocomposites was carried out from room temperature to 700 °C using thermogravimetric analysis (TGA) in nitrogen and oxygen atmospheres. The presence of the unmodified nanoclay enhanced the onset of degradation in both the environments, because of polymer-filler interaction, exfoliation, uniform dispersion and high thermal stability of the layered silicates. In the derivative curve, there was a single Tmax, indicating one-stage degradation for all the samples. The non-isothermal activation energy of degradation was determined using the Kissinger and the Flynn-Wall-Ozawa methods. The nanocomposites showed higher activation energy than the neat elastomer. The activation energy of degradation, as observed by isothermal kinetics, was 165, 168 and 177 kJ mol−1 for the neat elastomer, modified and unmodified clay filled samples, respectively. Intrinsic viscosity, measured after low temperature ageing (125-175 °C) showed that the viscosity values were higher for the nanocomposites. The mechanism of degradation is discussed.  相似文献   

19.
The temperature effects during the sol–gel process and ageing of the silica-based monolith on the structure and separation efficiency of the capillary columns (100 μm i.d., 150 mm) for HPLC separations were studied. The tested columns were synthesized from a mixture of tetramethoxysilane, polyethylene glycol and urea under the acidic conditions. The temperature was varied from 40 °C to 44 °C and formation of bypass channels between the silica mold and the capillary wall was examined. The temperature of 43 °C was estimated as optimal for preparation of efficient silica capillary columns which were subsequently modified by octadecyldimethyl-N,N-diethylaminosilane or covered by poly(octadecyl methacrylate) and tested using standard mixture of alkylbenzenes under the isocratic conditions.  相似文献   

20.
The important polymer stabilizer, 1,2-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, which serves a dual role as a metal deactivator and antioxidant, is shown to have crystal polymorphism. Although the published melting range is 225-232 °C, which is well above the processing temperature of many polymers in which it is used, existence of a second polymorph that transforms below 205 °C is demonstrated. This α polymorph, which is thermodynamically stable at room temperature, is thermodynamically un-favored at temperatures above about 176 °C. It is shown that under some conditions the α polymorph can endothermically pass directly into the melt state at temperatures below 205 °C, while under other conditions it undergoes a direct endothermic solid-solid transition to the higher melting β polymorph.The results highlight the potential importance of polymorphs for controlling polymer additive behavior and elucidate important phenomena relevant to dispersion of this additive in polymer compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号