首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Polylactide nanocomposites with multi-walled carbon nanotubes (PLA/MWCNT) in the form of porous foams made of a biocompatible, biodegradable and environmentally friendly polymer with a small amount of carbon nanotubes, were investigated in this work. Additionally, PLA/MWCNT porous nanocomposites were coated with MWCNTs using the electrophoretic deposition method (EPD). All samples were characterized by a porosity of about 90%, showing pore sizes in the range of 100 to 200 μm, for PLA/MWCNT foam, however, EPD deposition resulted in an decrease in the number of smaller pores in PLA/MWCNT + MWCNT (EPD) foam. The porous polymer (PLA) matrix, shows almost twofold increase in crystallinity while depth penetrating the volume of the sample. The crystallinity, of the PLA/MWCNT foam, at first is growing then it gradually lowers, while for the PLA/MWCNT + MWCNT(EPD) foam almost does not change. This behavior points toward significant distinction between surface and interior of the samples. A detailed analysis of Raman spectra indicates related carbon structures occurring in the nanomaterial foams: graphene and graphite phases, CNT and also carbon amorphous phases. The characteristics of a single-shell vibration are visible by the character of the G-band. The estimated crystallite size in PLA/MWCNT + MWCNT(EPD) is about 3 times smaller than that in the PLA/MWCNT.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) were used successfully for the removal of heavy metals from aqueous solution. Characterization techniques showed the carbon as nanotubes with an average diameter between 40 and 60 nm and a specific surface area of 61.5 m2 g?1. The effect of carbon nanotubes mass, contact time, metal ions concentration, solution pH, and ionic strength on the adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) by MWCNTs were studied and optimized. The adsorption of the heavy metals from aqueous solution by MWCNTs was studied kinetically using different kinetic models. A pseudo-second order model and the Elovich model were found to be in good agreement with the experimental data. The mechanism of adsorption was studied by the intra-particle diffusion model, and the results showed that intra-particle diffusion was not the slowest of the rate processes that determined the overall order. This model also revealed that the interaction of the metal ions with the MWCNTs surface might have been the most significant rate process. There was a competition among the metal ions for binding of the active sites present on the MWCNTs surface with affinity in the following order: Cu(II) > Zn(II) > Pb(II) > Cd(II).  相似文献   

3.
CuO/MWCNT nanocomposite is prepared by a simple precipitation method. The MWCNTs are incorporated into the leaf-like CuO nanoplates and build up a network to connect the CuO nanoleaves. The as-prepared CuO/MWCNT exhibits superior reversible Li-ion storage, the capacity maintains 627 mAh g? 1 at 60 mA g? 1 even after 50 cycles. The improved capability is ascribed to the MWCNT network in the composite, which improves the electrical contact of CuO/CuO and CuO/current collector, facilitates the charge transfer on CuO/electrolyte interfaces, and compensates the volume change of CuO during cycling.  相似文献   

4.
Luffa cylindrica (LC), a tropical vegetal product, consists of highly vascular system. It has been modified by calcium phosphate and calcium carbonate separately to produce composites of Ca-salts. The modified form of LC has been reinforced with novolac resin at 30 °C to provide cross linked polymer composites. The composites have been further sonicated at 40 °C for 1 h to produce bio nano composites. The final yield is more than 80% of the raw materials used. The physical and chemical analysis of the composites have been done. Incorporation of resin in to the inner fiber surface of LC which is rich in cellulose is confirmed from ultra-violet spectroscopy (UV), and Fourier transform infrared (FTIR) analysis. Thermal studies of the composites done in an inert atmosphere reveals that the composites decompose within a temperature range of 250 - 550 °C. The tensile parameters such as maximum stress, Young's modulus and yield strength were measured. The compressive and flexural strength of the LC fiber- reinforced composites were also studied by varying the weight of fiber in the resin.  相似文献   

5.
《先进技术聚合物》2018,29(1):347-354
This study investigates the effect of multiwalled carbon nanotubes (MWCNTs) content on rheological, mechanical, and EMI shielding properties in Ka band (26.5‐40 GHz) of poly (ether‐ketone) [PEK] prepared by melt compounding using twin screw extruder. Transmission electron microscopy (TEM) and field emission gun scanning electron microscopy (FEG‐SEM) studies were adopted to identify dispersion of nanotubes in PEK matrix. TEM and SEM images showed uniform dispersion of MWCNTs in PEK/MWCNT composites even at loading of 5 wt%. The rheological studies showed that the material experiences viscous (fluid) to elastic (solid) transition at 1 wt% loading beyond which nanotubes form continuous network throughout the matrix which in turn promotes reinforcement. Additionally, Van‐Gurp Palmen plot (phase angle vs complex modulus) and values of damping factor further confirm that the material undergoes viscous to elastic transition at 1 wt% loading. This reinforcement effect of nanotubes is reflected in enhanced mechanical properties (flexural strength and flexural modulus). Flexural strength and flexural modulus of PEK showed an increment of 17% upon incorporation of 5 wt% of MWCNTs. Total shielding effectiveness (SET) of −38 dB with very high shielding effectiveness due to absorption (SEA ~ −34 dB) was observed at 5 wt% loading of MWCNTs in PEK matrix in the frequency range of 26.5‐40 GHz (Ka band).  相似文献   

6.
Carbon/carbon (C/C) composites with PyC/TaC/PyC or PyC/SiC/TaC/PyC multi-interlayers were prepared by isothermal chemical vapor infiltration, followed by Furan resin impregnation and carbonization. Microstructures, mechanical properties including flexural strength, ductile displacement, and fracture behaviors of composites were studied. Furthermore, composites were heat treated at 2000 °C to study the effects of heat treatment on mechanical properties and fracture behaviors. PyC/TaC/PyC and PyC/SiC/TaC/PyC multi-interlayers have been deposited uniformly in C/C composites. With the introduction of PyC/TaC/PyC multi-interlayers in C/C composites, the flexural strength decreases; however, the ductile displacement increases. The fracture behavior changes from brittleness (0% TaC) to pseudo-ductility (5% TaC) and high toughness (10% TaC). When PyC/SiC/TaC/PyC multi-interlayers are introduced in C/C composites, the flexural strength is improved remarkably from 270 MPa to 522 MPa, but the ductile displacement decreases obviously from 0.49 mm to 0.24 mm, and the fracture behavior becomes brittle again. After heat treatment at 2000 °C, the flexural strength decreases, but the ductile displacement increases and pseudo-ductility or high toughness can be obtained.  相似文献   

7.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

8.
A novel network composite cathode was prepared by mixing LiFePO4 particles with multiwalled carbon nanotubes for high rate capability. LiFePO4 particles were connected by multiwalled carbon nanotubes to form a three-dimensional network wiring. The web structure can improve electron transport and electrochemical activity effectively. The initial discharge capacity was improved to be 155 mA h/g at C/10 rate (0.05 mA/cm2) and 146 mA h/g at 1C rate. The comparative investigation on MWCNTs and acetylene black as a conducting additive in LiFePO4 proved that MWCNTs addition was an effective way to increase rate capability and cycle efficiency.  相似文献   

9.
The preparation of new layered double hydroxides/unsaturated polyester (LDH/UP) nanocomposites was performed and the effect of LDH on the resin properties was studied. Two different organo-LDHs have been prepared, adipate-LDH (A-LDH) and 2-methyl-2-propene-1-sulfonate-LDH (S-LDH); in order to evaluate the influence of these nanofillers, samples with two different concentrations were dispersed in the matrix. The physical, thermal, mechanical and fire reaction properties of nanocomposites were studied. Intercalated layered structures were observed for the different organo-LDH loadings (1 and 5 wt%). Mechanical properties studied under flexural tests show that incorporation of organo-LDH in the resin reduces the flexural strength of polyester resin while the flexural modulus is unchanged for the S-LDH/UP composites and increased with 1 wt% of A-LDH. Adding 1 wt% of A-LDH to the resin produces an important reduction on the flexural strength, but an increase of the flexural modulus. The study of fire reaction properties, using cone calorimeter, suggested a significant reduction in the UP flammability, by 46 and 32%, by incorporating 1 wt% of A-LDH and 5 wt% S-LDH, respectively. Mass loss curves show enhanced char formation with the different loads tested while the amount of evolved smoke remains quite unchanged.  相似文献   

10.
Silver nanoparticle coated multi-walled carbon nanotubes (Ag/MWCNT) were prepared and used to fabricate a modified electrode. The Ag/MWCNT composites were observed by a transmission electron microscope (TEM), and the electrochemical properties of the Ag/MWCNT composite modified glassy carbon electrode were characterized by electrochemical measurements. The results showed that these composites had a favorable catalytic ability for the reduction of trichloroacetic acid (TCAA). Square wave voltammetric (SWV) technique was applied to detect TCAA. Under optimum conditions, the voltammetric determination of TCAA was performed with a linear range of 5.0 × 10? 6–1.2 × 10? 4 mol L? 1 and a detection limit of 1.9 × 10? 6 mol L? 1 (S/N = 3).  相似文献   

11.
New nanocomposites with multi-walled carbon nanotubes (MWCNTs) embedded in metal-organic coordination polymers (MOCPs) were successfully prepared as highly efficient matrices of enzyme immobilization for sensitive electrochemical biosensing. NaAuCl4 was pre-adsorbed on the MWCNTs to act as anchor sites to further coordinate with ligand benzenedithiol and form MOCPs. The formation of MWCNTs-MOCPs one-pot entrapped glucose oxidase (GOx) with a ratio close to 100% and exhibited enhanced mass-transfer over MOCPs. Thus MWCNTs-MOCPs-modified electrodes present superior enzymatic catalysis performance of greatly enhanced sensitivity (136 μA cm 2 mM 1) and magnitudes-lower detection limit (48 nM), being superior to most analogues.  相似文献   

12.
We report on direct electron transfer reactions of bilirubin oxidase at multi-walled carbon nanotube (MWCNT) modified glassy carbon electrodes (GCE). The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD in solution, adsorbed and covalently linked to the nanotubes. The MWCNT modification of GC electrodes strongly enhances the oxygen reduction compared to the signals at unmodified GCE. Under anaerobic conditions with a high protein concentration in solution a pair of redox peaks with a formal potential of 450 ± 15 mV vs Ag/AgCl, 1 M KCl (pH 7.4) was found with cyclic voltammetry. The redox conversion is indicated to be surface-controlled and pH-dependent (54.5 mV/pH). The quasi-reversible redox reaction might be attributed to the trinuclear T2/T3 cluster of BOD.  相似文献   

13.
The environmental pollution due to the industrial wastewater of four different areas in the Gulf of Suez, Red Sea, Egypt, was studied. Adsorption capacities toward the concerned heavy metal ions Cu(II), Zn(II), Fe(II), and Pb(II) by multiwalled carbon nanotubes (MWCNTs) and modified-MWCNTs with 5,7-dinitro-8-quinolinol were investigated. MWCNTs as well as the modified-MWCNTs were characterized using Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Adsorption of the studied divalent metal ions was measured by atomic absorption spectrometry (AAS). The effects of solution conditions such as pH, shaking time, metal ion concentration, ionic strength and adsorbent dosage on the adsorption process were also examined. The obtained results showed that removals of the heavy metal ions under consideration by MWCNTs are obviously dependent on the experimental conditions. The maximum adsorption capacities as calculated applying Langmuir equation to single ion adsorption isotherms were found to be 142.8 mg/g for Cu(II), 250 mg/g for Zn(II), 111.1 mg/g for Fe(II), and 200 mg/g for Pb(II) using MWCNTs; meanwhile, the modified-MWCNTs exhibited higher values of the respective maximum adsorption capacities as 333.3 mg/g for Cu(II), 500 mg/g for Zn(II), 200 mg/g for Fe(II), and 333.3 mg/g for Pb(II). Kinetic studies were also performed and the experimental data followed a pseudo-second order model of the adsorption process. The obtained results suggest that the tested adsorption systems of MWCNTs and modified-MWCNTs have suitable affinity toward the metal ion under consideration. Both systems could act as potentially applicable tool in environmental protection.  相似文献   

14.
We report the synthesis and characterization of SnO2@multiwalled carbon nanotubes (MWCNTs) nanocomposite as a high capacity anode material for sodium-ion battery. SnO2@MWCNT nanocomposite was synthesized by a solvothermal method. SEM and TEM analyses show the uniform distribution of SnO2 nanoparticles on carbon nanotubes. When applied as anode materials in Na-ion batteries, SnO2@MWCNT nanocomposite exhibited a high sodium storage capacity of 839 mAh g 1 in the first cycle. SnO2@MWCNT nanocomposite also demonstrated much better cycling performance than that of bare SnO2 nanoparticles and bare MWCNTs. Furthermore, the nanocomposite electrode also showed a good cyclability and an enhanced Coulombic efficiency on cycling.  相似文献   

15.
A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient nitrene addition. This novel nano filler was melt mixed into polypropylene (PP) and the composite was characterized by FT-IR spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM), Rheology and Dielectric Relaxation Spectroscopy (DRS). The analyses showed that composites with the novel filler had a high degree of discharge from the surface and higher conductivity compared to the pristine filler, illustrating an efficient conductive network in the composites. The composites showed low percolation thresholds of 0.3 wt.% (0.15 vol.%) as well as improved stability at a range of temperatures from 25–135 °C.  相似文献   

16.
This work reports a new type of disposable electrochemical sensor for the determination of bisphenol A (BPA). The working electrodes were fabricated by sputtering gold nanoparticles on commercial art paper and then modifying the gold layer with multi-walled carbon nanotubes (MWCNTs). The electrode in their intermediated and final stage was characterized by atomic force microscope, scanning electron microscope and electrochemical techniques. To perform electrochemical analysis, the resulting electrode was integrated with a homemade paper-based analytical device, which could also ensure the immobilization of MWCNTs on the electrode surface without any functionalization. The determination of BPA was investigated by linear sweep voltammetry (LSV). A wide linearity in the range from 0.2 to 20 mg/L with a detection limit of 0.03 mg/L (S/N = 3) was obtained. The between-sensor reproducibility was 5.7% (n = 8) for 0.5 mg/L BPA. The proposed sensor showed good resistance against interferences and was applied to detect BPA leached from real plastic samples with satisfying results. This disposable sensor is readily mass-produced and has been verified to serve as an attractive alternative to screen-printed electrodes for practical applications.  相似文献   

17.
Alumina particles were incorporated in poly(dimethyl siloxane) (PDMS) matrix in company with multiwalled carbon nanotube (MWCNT) for improving the thermal and electrical conductivities. The concentration of MWCNT was increased from 0 to 10 wt% to PDMS at fixed amounts of alumina (200 and 300 wt% to PDMS). Thermal conductivity of PDMS composites was increased with the increasing amount of MWCNT and the excellent dispersibility of the incorporated pristine MWCNT was achieved. Thermal and electrical conductivities of the composites were increased with the increasing concentration of the alumina because the alumina particles help disperse MWCNT within the PDMS matrix due to the ball milling effect during compounding. The properties of the alumina and MWCNT incorporated PDMS composites were investigated in terms of the curing characteristics, electrical conductivity, and thermal conductivity. The MWCNT/alumina incorporated composite showed the high electrical conductivity to the level of the semiconductor.  相似文献   

18.
Organotriethoxysilanes (APS-PGE2) were synthesized by reacting 1 mol of 3-(aminopropyl)triethoxysilane with 2 mol of 1,2-epoxy-3-phenoxypropane (PGE). Polyhedral oligomeric silsesquioxanes functionalized with bulky amino groups (ASSQO) were prepared by hydrolytic condensation of APS-PGE2 catalyzed by formic acid. Methacrylate resins were activated for visible light polymerization by the addition of 1 wt.% CQ in combination with the synthesized ASSQO at loadings between 0 and 30 wt.%. The progress of monomer conversion versus irradiation time showed that the CQ/ASSQO pair is an efficient photoinitiator system because a fast reaction and high conversion result from 60 s irradiation at 600 mW/cm2. The lack of methacrylate groups in the ASSQO, able to polymerize with the methacrylate resin, results in the absence of chemical bond between the ASSQO cages and the matrix. Debonding of ASSQO cages from the polymer give rise to nanovoids; which allows the methacrylate matrix to yield and deform plastically. Consequently, the final effect is a decrease in the flexural modulus and compressive strength with increasing amounts of ASSQO. The present study highlights the surface effect on the overall properties in nanostructured materials.  相似文献   

19.
PtRuMe (Me = Fe, Co, Ni) catalysts dispersed on multi-wall carbon nanotubes (MWCNTs) were prepared by ultrasonic-assisted chemical reduction. X-ray diffraction (XRD) showed that Pt existed as face-centered cubic structure, while Ru and Me alloyed with Pt. The calculated particle sizes from XRD data are of 3.40, 3.40, 2.61 and 3.06 nm for PtRu, PtRuFe, PtRuCo and PtRuNi, respectively, and are consistent with TEM results. The electrochemical measurements showed that the addition of Me to PtRu enhances the electrocatalytic properties for methanol oxidation and PtRuNi has the best catalytic activity and stability.  相似文献   

20.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号