共查询到20条相似文献,搜索用时 0 毫秒
1.
Ch. Desfran?ois J. P. Schermann 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1993,26(Z1):344-346
Thermal electron attachment to oxygen is strongly modified when this molecule is bound in heterogenous van der Waals clusters. With the help of a laser-excited Rydberg electron source, we investigate the influence upon electron capture of the solvent nature by comparing O2(H2O)N and O2(C6H6)N attachment rate constants, and we observe size effects down to nearly zero energy. 相似文献
2.
The thermal attachment of electrons to SF(6) is measured in a flowing-afterglow Langmuir-probe apparatus monitoring electron concentrations versus axial position in the flow tube. Temperatures between 300 and 670 K and pressures of the bath gas He in the range of 0.3-9 Torr are employed. Monitoring the concentrations of SF(6)(-) and SF(5)(-), the latter of which does not detach electrons under the applied conditions, an onset of thermal detachment and dissociation of SF(6) at temperatures above about 530 K is observed. Analysis of the mechanism allows one to deduce thermal detachment rate coefficients. Thermal dissociation rate coefficients for the reaction SF(6)(-)-->SF(5)(-)+F can only be estimated by unimolecular rate theory based on the results from Part I and II of this series. Under the applied conditions they are found to be smaller than detachment rate coefficients. Combining thermal attachment and detachment rates in a third-law analysis, employing calculated vibrational frequencies of SF(6) and SF(6)(-), leads to the electron affinity (EA) of SF(6)(-). The new value of EA=1.20(+/-0.05) eV is significantly higher than previous recommendations which were based on less direct methods. 相似文献
3.
Ptasińska S Gschliesser D Bartl P Janik I Scheier P Denifl S 《The Journal of chemical physics》2011,135(21):214309
Gas phase studies of dissociative electron attachment to simple alkyl (CF(3)SO(3)CH(3)) and aryl (C(6)H(5)SO(3)CF(3) and CF(3)SO(3)C(6)H(4)CH(3)) triflates, model molecules of nonionic photoacid generators for modern lithographic applications, were performed. The fragmentation pathways under electron impact below 10 eV were identified by means of crossed electron-molecular beam mass spectrometry. Major dissociation channels involved C-O, S-O, or C-S bond scissions in the triflate moiety leading to the formation of triflate (OTf(-)), triflyl (Tf(-)), or sulfonate (RSO(3)(-)) anions, respectively. A resonance leading to C-O bond breakage and OTf(-) formation in alkyl triflates occurred at electron energies about 0.5 eV lower than the corresponding resonance in aryl triflates. A resonance leading to S-O bond breakage and Tf(-) formation in aryl triflates occurred surprisingly at the same electron energies as C-O bond breakage. In case of alkyl triflates S-O bond breakage required 1.4 eV higher electron energies to occur and proceeded with substantially lower yields than in aryl triflates. C-S bond scission occurred for all presently studied triflates at energies close to 3 eV. 相似文献
4.
Experimental data from the literature for cross sections and rate constants for dissociative electron attachment to CF(3)Br, with separately varied electron and gas temperatures, are analyzed by a kinetic modeling approach. The analysis suggests that electronic and nuclear contributions to the rate constants can be roughly separated, the former leading to a negative temperature coefficient, the latter to a positive temperature coefficient. The nuclear factor in the rate constant is found to be of Arrhenius form with an activation energy which is close to the energy of crossing of the CF(3)Br and CF(3)Br(-) potential curves along the CBr bond. 相似文献
5.
Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature T(e) and the molecular temperature T(G) are assumed to be in thermal equilibrium, i.e., T = T(e) = T(G)). This rise is frequently modeled by the Arrhenius equation k(T) = k(A) exp[-E(a)∕(k(B)T)], and an activation energy E(a) is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Forys?, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(E(a); T ≈ 300 K) = k(1) exp[-E(a)∕E(0)]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH(3)Cl, CH(3)Br, CF(3)Cl, and CH(2)Cl(2) (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck-Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases are discussed for which the proposed relation does not apply. 相似文献
6.
Hamann T Edtbauer A da Silva FF Denifl S Scheier P Swiderek P 《Physical chemistry chemical physics : PCCP》2011,13(26):12305-12313
Dissociative electron attachment (DEA) to gaseous formamide, HCONH(2), has been investigated in the energy range between 0 eV and 18 eV using a crossed electron/molecule beam technique. The negative ion fragments have been comprehensively monitored and assigned to molecular structures by comparison with the results for two differently deuterated derivatives, namely 1D-formamide, DCONH(2), and N,N,D-formamide, HCOND(2). The following products were observed: HCONH(-), CONH(2)(-), HCON(-), OCN(-), HCNH(-), CN(-), NH(2)(-)/O(-), NH(-), and H(-). NH(2)(-) was also separated from O(-) by using high-resolution negative ion mass spectrometry. Four resonant dissociation channels can be resolved, the strongest ones being located between 2.0 and 2.7 eV and between 6.0 and 7.0 eV. CN(-) as the most abundant fragment and HCONH(-) are the dominant products of the first of these two resonances. The most important products of the latter resonance are NH(2)(-), CN(-), H(-), CONH(2)(-), and OCN(-). It is thus found that the loss of neutral H is a site-selective process, dissociation from the N site taking place between 2.0 and 2.7 eV while dissociation from the C site occurs between 6.0 and 7.0 eV. The suitability of these reactions and thus of formamide as an agent for electron-induced surface functionalisation is discussed. 相似文献
7.
《Chemical physics letters》1985,118(2):167-173
Formation of halogen negative ions by dissociative electron attachment on the halobenzenes C6H5Br, C6H5Cl and C6H5F is studied as a function of incident electron energy up to 7.5 eV by mass spectrometry. The threshold energies for Cl− and Br− provide a determination of the first electron affinities for C6H5Cl and C6H5Br. The absolute cross section for Ci− formation from C6H5Cl was also measured. 相似文献
8.
Thin films of the short single DNA strand, GCAT, in which one of the bases has been removed were bombarded with 3 to 15 eV electrons. The yield functions of the H(-), O(-) and OH(-) ions desorbed from these films exhibit a broad peak near 9 eV, which is attributed to dissociative electron attachment to the basic molecules. Whereas removal of any one of the bases considerably decreases N-glycosidic and backbone C-O bond scission, the creation of basic sites does not appreciably modify bond rupture leading to anion electron stimulated desorption. These seemingly contradictory results make it possible to propose a detailed mechanism leading to the transfer of electrons in the range 5-13 eV within DNA. 相似文献
9.
Ptasinska S Denifl S Abedi A Scheier P Märk TD 《Analytical and bioanalytical chemistry》2003,377(7-8):1115-1119
By using a high-resolution electron energy monochromator low-energy electron attachment to gas-phase glycine (H2NCH2COOH, or G) has been studied by means of mass spectrometric detection of the product anions. In the same way as for several other biologically relevant molecules no stable parent anion was formed by free electron attachment. The largest dissociative electron attachment (DEA) cross-section, approximately 5×10–20 m2, was observed for (G–H)–+H at an electron energy of 1.25 eV. Glycine and formic acid (HCOOH) have several common features, because a precursor ion can be characterized by electron attachment to the unoccupied * orbital of the –COOH group. At higher incident electron energies several smaller fragment anions are formed. Except for H–, which could not be observed in this study, there was good agreement with an earlier investigation by Gohlke et al. 相似文献
10.
The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height. 相似文献
11.
Ptasińska S Denifl S Mróz B Probst M Grill V Illenberger E Scheier P Märk TD 《The Journal of chemical physics》2005,123(12):124302
Free-electron attachment to thymine and partially deuterated thymine, where D replaces H at all carbon atoms, is studied in the electron energy range from about 0 to 15 eV. The formation of fragment anions that are formed by the loss of one or two H (D) atoms is analyzed as a function of the incident electron energy using a crossed electron/neutral beam apparatus in combination with a quadrupole mass spectrometer. By using partially deuterated thymine and quantum-chemical calculation a bond selectivity for the loss of one and two hydrogen atoms is observed that is determined only by the kinetic energy of the incident electron. 相似文献
12.
13.
Mechanisms of low-energy electron (LEE) attachment and subsequent single-strand break (SSB) formation are investigated by density functional theory treatment of a simple model for DNA, i.e., the nucleotide, 5'-thymidine monophosphate (5'-dTMPH). In the present study, the C5'-O5' bond dissociation due to LEE attachment has been followed along the adiabatic as well as on the vertical (electron attached to the optimized geometry of the neutral molecule) anionic surfaces using B3LYP functional and 6-31G* and 6-31++G** basis sets. Surprisingly, it is found that the PES of C5'-O5' bond dissociation in the anion radicals have approximately the same barrier for both adiabatic and vertical pathways. These results provide support for the hypothesis that transiently bound electrons (shape resonances) to the virtual molecular orbitals of the neutral molecule likely play a key role in the cleavage of the sugar-phosphate C5'-O5' bond in DNA resulting in the direct formation of single strand breaks without significant molecular relaxation. To take into account the solvation effects, we considered the neutral and anion radical of 5'-dTMP surrounded by 5 or 11 water molecules with Na+ as a counterion. These structures were optimized using the B3LYP/6-31G** level of theory. We find the barrier height for adiabatic C5'-O5' bond dissociation of 5'-dTMP anion radical in aqueous environment is so substantially higher than in the gas phase that the adiabatic route will not contribute to DNA strand cleavage in aqueous systems. This result is in agreement with experiment. 相似文献
14.
T. Kondow T. Nagata K. Kuchitsu 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1989,12(1-4):291-292
Van der Waals clusters of various molecules were collisionally ionized by high-Rydberg rare gas atoms and slow electrons. Negative cluster ions thus produced were detected by mass spectroscopy. The ionization mechanism were investigated by measurements of the size- and the energy-dependences of the electron attachment cross sections. 相似文献
15.
《Chemical physics letters》1986,130(5):448-451
For dilute electrons dispersed in the carrier gas argon the influence of attachment to different halocarbons on the time variation of the electron mobility is studied. In some cases stationary negative electron mobilities are predicted. 相似文献
16.
R. V. Khatymov M. V. Muftakhov P. V. Schukin V. A. Mazunov 《Russian Chemical Bulletin》2004,53(4):738-741
The processes of resonant dissociative electron attachment to the molecules of dibenzo-p-dioxin and its chlorinated derivatives containing one to four chlorine atoms (totally eight compounds) were investigated. It was established that 2,3,7-trichlorodibenzo-p-dioxin; 1,2,3,4-tetrachlorodibenzo-p-dioxin; 1,3,7,8-tetrachlorodibenzo-p-dioxin, and 2,3,7,8-tetrachlorodibenzo-p-dioxin molecules are chatacterized by positive electron affinities. At electron energies below 2 eV, the electron attachment is caused by the shape resonances. Based on the energy correlation between the negative ion resonance peaks at 3—4 eV and the UV band maxima, it was suggested that electron attachment in this energy region occurs by the mechanism of inter-shell resonance with the molecular singlet-excited states as parents. The possibility for the rearrangement processes resulting in oxy-anionic structures to occur is substantiated. 相似文献
17.
Sommerfeld T 《The Journal of chemical physics》2007,126(12):124301
Recently, the three sugars ribose, deoxyribose, and fructose have been shown to undergo dissociative electron attachment at threshold, that is, to fragment upon capture of a zero-energy electron. Here the electron acceptor properties of three fructose isomers are investigated in view of a doorway mechanism. Two key ingredients for a doorway mechanism, a weakly bound state able to support a vibrational Feshbach resonance, and a valence anion more stable than neutral fructose are characterized. Moreover, possible structures for the observed fragment anion (fructose-H2O)- are suggested. 相似文献
18.
Thermochemical analysis of the electron capture process of SF6 leads to a rate constant for the reverse process \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm SF}_6^ - \mathop \to \limits^2 {\rm SF}_6 + e^ -,k_2 = 1.5 \times 10^{13 - 31.4/\theta } {\rm s}^{{\rm - 1}} $\end{document}, where θ = 2.303RT, in kcal/mol. The electron affinity of 32±3 kcal/mol is deduced from the observed bimolecularity of the capture process down to 0.1 torr Ar bath gas and estimated entropies of SF6 and SF. The capture process is discussed from the view point of the formation of a metastable SF electron (SF6·e) Langevin complex which appears to have a lifetime of about 2 × 10?13 s. Curve crossing from the SF6·e complex to vibrationally excited (SF)* appears to have a normal rate and A factor. This is interpreted to indicate near-resonant coupling between the orbiting electron and the vibronic motions of SF6, together with similarity in structure of SF6 and SF. It is shown that the apparent slowness of thermal electron ejection from SF is a result of an unfavorable equilibrium constant rather than a slow rate. 相似文献
19.
The principle of microscopic reversibility cannot be applied to a system unless a detailed accounting of the energy states is made. Recently reported rates of electron attachment to SF6 in different carrier gases may simply indicate that three-body attachment was relatively unimportant in those systems. 相似文献
20.
G. Tóth 《Journal of Radioanalytical and Nuclear Chemistry》1976,30(2):547-551
It was shown that the desorption kinetics of chemisorbed iodine in electron donor solvents obeys an equation obtained by solving
a set of first order rate laws expressing the energetic non-uniformity of the solid surface. Reference desorption activation
energies were calculated and compared with the CT complex formation free energies. 相似文献