首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Let γ(G) and γg(G) be the domination number and the game domination number of a graph G, respectively. In this paper γg-maximal graphs are introduced as the graphs G for which γg(G)=2γ(G)?1 holds. Large families of γg-maximal graphs are constructed among the graphs in which their sets of support vertices are minimum dominating sets. γg-maximal graphs are also characterized among the starlike trees, that is, trees which have exactly one vertex of degree at least 3.  相似文献   

5.
Let us denote the independence polynomial of a graph by IG(x). If IG(x)=IH(x) implies that G?H then we say G is independence unique. For graph G and H if IG(x)=IH(x) but G and H are not isomorphic, then we say G and H are independence equivalent. In [7], Brown and Hoshino gave a way to construct independent equivalent graphs for circulant graphs. In this work we give a way to construct the independence equivalent graphs for general simple graphs and obtain some properties of the independence polynomial of paths and cycles.  相似文献   

6.
7.
8.
9.
Let G be a connected regular graph and l(G), s(G), t(G) the line, subdivision, total graphs of G, respectively. In this paper, we derive formulae and lower bounds of the Kirchhoff index of l(G), s(G) and t(G), respectively. In particular, we give special formulae for the Kirchhoff index of l(G), s(G) and t(G), where G is a complete graph Kn, a regular complete bipartite graph Kn,n and a cycle Cn.  相似文献   

10.
11.
12.
The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic. The list vertex arboricity al(G) is the list-coloring version of this concept. In this note, we prove that if G is a toroidal graph, then al(G)4; and al(G)=4 if and only if G contains K7 as an induced subgraph.  相似文献   

13.
Let G=(V,E) be a graph. A set S?V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We define the restrained bondage number br(G) of a nonempty graph G to be the minimum cardinality among all sets of edges E?E for which γr(G?E)>γr(G). Sharp bounds are obtained for br(G), and exact values are determined for several classes of graphs. Also, we show that the decision problem for br(G) is NP-complete even for bipartite graphs.  相似文献   

14.
15.
16.
The distinguishing chromatic number of a graph G, denoted χD(G), is defined as the minimum number of colors needed to properly color G such that no non-trivial automorphism of G fixes each color class of G. In this paper, we consider random Cayley graphs Γ defined over certain abelian groups A with |A|=n, and show that with probability at least 1?n?Ω(logn), χD(Γ)χ(Γ)+1.  相似文献   

17.
Let G be a plane graph, and let φ be a colouring of its edges. The edge colouring φ of G is called facial non-repetitive if for no sequence r1,r2,,r2n, n1, of consecutive edge colours of any facial path we have ri=rn+i for all i=1,2,,n. Assume that each edge e of a plane graph G is endowed with a list L(e) of colours, one of which has to be chosen to colour e. The smallest integer k such that for every list assignment with minimum list length at least k there exists a facial non-repetitive edge colouring of G with colours from the associated lists is the facial Thue choice index of G, and it is denoted by πfl(G). In this article we show that πfl(G)291 for arbitrary plane graphs G. Moreover, we give some better bounds for special classes of plane graphs.  相似文献   

18.
A 2-coloring is a coloring of vertices of a graph with colors 1 and 2. Define Vi?{vV(G):c(v)=i} for i=1 and 2. We say that G is (d1,d2)-colorable if G has a 2-coloring such that Vi is an empty set or the induced subgraph G[Vi] has the maximum degree at most di for i=1 and 2. Let G be a planar graph without 4-cycles and 5-cycles. We show that the problem to determine whether G is (0,k)-colorable is NP-complete for every positive integer k. Moreover, we construct non-(1,k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer k. In contrast, we prove that G is (d1,d2)-colorable where (d1,d2)=(4,4),(3,5), and (2,9).  相似文献   

19.
20.
A prominent parameter in the context of network analysis, originally proposed by Watts and Strogatz (1998), is the clustering coefficient of a graph G. It is defined as the arithmetic mean of the clustering coefficients of its vertices, where the clustering coefficient of a vertex u of G is the relative density m(G[NG(u)])dG(u)2 of its neighborhood if dG(u) is at least 2, and 0 otherwise. It is unknown which graphs maximize the clustering coefficient among all connected graphs of given order and size.We determine the maximum clustering coefficients among all connected regular graphs of a given order, as well as among all connected subcubic graphs of a given order. In both cases, we characterize all extremal graphs. Furthermore, we determine the maximum increase of the clustering coefficient caused by adding a single edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号