首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of charge separation in a cold plasma was studied with the degradation reaction in molecular clusters HCl(H2O) n + m(H2O) ? H3O+(H2O) n + m ?1Cl?, taken as an example, which precedes chlorine adsorption on the ice surface in the stratosphere. The formation of a vast population of H+, Cl? ion pairs stabilized in water clusters ensures the intense binding of chlorine in ice microcrystals that occur in stratospheric clouds. The accumulation of chlorine in the stratosphere is recognized as the main cause of the destruction of the protective ozone layer. The ion buildup effect is a result of the balance between opposite ionization and recombination processes in the presence of a high energy barrier that retards ion recombination in water clusters. A kinetic equation for the process was obtained and its solution was analyzed. The parameters of the barrier were calculated by computer simulation.  相似文献   

2.
The surface oxides produced from potentiostatic and galvanostatic oxidation of Pt electrodes in HClO4 and H2SO4 are examined using X-ray photoelectron spectroscopy. The oxide I species produced as the initial oxidation product by successively more anodic potentiostatic oxidation in 0.2 M HClO4 is found to have a Pt2+ oxidation state, a binding energy characteristic of neither PtO, Pt(OH)2 or PtO2, and a limiting thickness of 8 Å. Galvanostatic oxidation in HClO4 and H2SO4 is found to produce PtO2·H2O as an unlimiting growth oxide or a limiting growth oxide layer depending on the concentration of the acid electrolyte. The incorporation of the acid electrolyte anion in the surface layer is shown to have an effect on which type of oxide layer is produced. X-ray decomposition and chemical modification by Ar+ stripping are shown to produce chemical artifacts complicating any interpretation of a Pt oxide surface layer.  相似文献   

3.
The ionization enthalpy of benzoic acid has been measured calorimetrically at 25°C in H2ODMSO mixtures ranging from pure water to a maximum DMSO molar ratio XDMSO = 0.80. With the increase of DMSO content, the ionization becomes more and more endothermic, and for XDMSO = 0.8 the ionization enthalpy is about 6 kcal mol?1 higher than in water. By also measuring the solution enthalpy of crystalline benzoic acid in the mixtures, it has been shown that the solvation of the undissociated molecule is the main cause for the increase of the dissociation enthalpy. A comparison has been made between the relative enthalpies of benzoic and hydroxide ions in H2ODMSO mixtures.  相似文献   

4.
We have investigated ionization and excitation of the Ba 6s n s 1 S 0 and 6s n d 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28n ?5, and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpet the data. In particular, multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values.  相似文献   

5.
A pair of premixed, H2O2Ar flames of fuel-rich (FR) and fuel-lean (FL) composition, both at atmospheric pressure and 2425 K, were doped with about 10−6 mol fraction of the lanthanide metals La, Ce, Pr and Nd; from a previous study, La was used as a benchmark. The metals produce solid particles in the flames and gaseous metallic species. The latter include metallic atoms A near the flame reaction zone, but only the monoxide AO, the oxide hydroxide OAOH and, in some cases, the dioxide AO2 further downstream at equilibrium. Metallic ions (< 1% of the total metal) were observed by sampling the flames through a nozzle into a mass spectrometer. All of the observed ions can be represented by four hydrate series: (a) major signals of AO+·nH2O (n = 0–3) for La, Ce, Pr and Nd; (b) small signals of AO2H+·nH2O (n = 0–2) for Ce, Pr and Nd; (c) still smaller signals of AO2+·nH2O (n = 0, 1) for Ce, Pr and Nd in the FL flame only; and (d) tiny signals of AOH+·nH2O (n = 0, 1) for Pr and Nd in the FR flame only. The actual structures of some of these ions may not correspond to simple hydrates: e.g. AO+·H2O = A(OH)2+ = protonated OAOH; AO2H+·H2O = A(OH)3+, etc. Since hydrogen flames contain essentially no natural ionization, a major objective was to consider probable ionization mechanisms for the metals. The primary reactions include both chemi-ionization, and thermal (collisional) ionization of AO whose ionization energy is low (about 5 eV). Some of the ions are formed by secondary ion/molecule reactions including three-body hydration, proton transfer, electron (charge) transfer, H atom abstraction by radicals and oxidation. In addition, the chemical ionization of the metallic species by H3O+ was investigated. The flame-ion chemistry of these metals is discussed in detail.  相似文献   

6.
The He(I) photoelectron spectra of (η5-C5H5)Fe(CO)2R, where R = CH3, η1-C3H5 and η1-C5H5, have been recorded. The lowest lying ion states result from ionization of molecular orbitals with large Fe 3d character; these move to lower anergy when R places double bonds in an allylic relationship to the metal atom. The cyclic voltammetric oxidation potential correlates well with the energies of the lowest ion states. A significant interaction between olefin π orbitals and the allylic metal center is proposed.  相似文献   

7.
The enthalpies of proton ionization of the biochemical buffers N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid (BES) and N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid (TES) were obtained in water-methanol mixtures in which the methanol mole fraction (Xm) varied in the range 0-0.36. For both buffers, ionization enthalpy for the first proton (ΔH1) was small in all solvent media. However, upon addition of methanol, ΔH2 increased steadily from 22.2 to a maximum of 27.2 kJ mol−1 for BES, whereas for TES it varied from 30.0 to 32.4, with a minimum of 28.6 kJ mol−1 at Xm=0.123. It is noteworthy that this solvent composition lies within the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of methanol-water interactions.  相似文献   

8.
We have studied the resonant multiphoton ionization of hydrogen in a three-photon excitation, one-photon ionization scheme. Superimposed on the ionization process we find a dissociation mechanism which manifests itself in a strong H+ signal. The ratio of H+ to H+2 signals depends on the vibrational quantum number v' of the intermediate state and on the laser intensity. We present a simple model which qualitatively reflects this dependence.  相似文献   

9.
Structures and energetic characteristics of Li(H2O) n and Li+(H2O) n clusters with n = 1–6, 19, and 27 determined in the second order of the Møller-Plesset perturbation theory with 6–31++G(d,p) basis set are analyzed. The electron density redistribution, which takes place upon the electron addition to a Li+(H2O) n cluster, is found to be provided by hydrogen-bonded water molecules: initially almost neutral molecules, which are most distant from lithium, become negatively charged. The calculated energies of the electron capture by Li+(H2O) n clusters are approximated with the appropriate electrostatic model, and estimates of the lithium ionization energy in water clusters of various sizes are found. Similar estimates obtained earlier for sodium are made more accurate.  相似文献   

10.
The extent of isomerization of [C9H10] ions, with lifetimes of approximately 10?11 and 10?6 s has been investigated using field ionization, collisionally activated dissociation and charge stripping techniques. The [C9H10] ions which were investigated included the molecular ions of α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, indan, cyclopropylbenzene, allylbenzene and the product of water loss from 3-phenylpropanol. The field ionization spectra of all the C9H10 hydrocarbons were different indicating that isomerization to a common ion structure had not occurred to a measurable extent for ions with lifetimes of approximately 10?11 s. Collisionally activated dissociation and charge stripping results indicated that most of the [C9H10] ions continued to maintain unique ion structures (or mixtures of structures) at ion lifetimes of 10?6 s. Possible exceptions are the [C9H10] ions from allylbenzene and cyclopropylbenzene which gave indistinguishable collisionally activated dissociation and charge stripping spectra.  相似文献   

11.
The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1−1 and T2−1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5– (Dy-W11), [ErIII(H2O)3GeW11O39]5– (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16− (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.  相似文献   

12.
Two-photon ionization mass spectra are obtained for NH3H2O binary clusters both with a nozzle beam and an ArF excimer laser. The detected major ions are H+(NH3)n(H2O)m(1 <m + n < 9). The results suggest that ammonia molecules constitute an inner shell which is surrounted by water molecules.  相似文献   

13.
The detection of hydrogen sulfide (H2S) by 2?+?1 resonance-enhanced multi-photon ionization (REMPI) and the application of H2S as a laser dopant for the detection of polar compounds in laser ion mobility (IM) spectrometry at atmospheric pressure were investigated. Underlying ionization mechanisms were elucidated by additional studies employing a drift cell interfaced to a time-of-flight mass spectrometer. Depending on the pressure, the primary ions H2S+, HS+, S+, and secondary ions, such as H3S+, were observed. The 2?+?1 REMPI spectrum of H2S near λ?=?302.5 nm was recorded at atmospheric pressure. Furthermore, the limit of detection and the linear range were established. In the second part of the work, H2S was investigated as an H2O analogous laser dopant for the ionization of polar substances by proton transfer. H2S exhibits a proton affinity (PA) similar to that of H2O, but a significantly lower ionization energy facilitating laser ionization. Ion-molecule reactions (IMR) of H3S+ with a variety of polar substances with PA between 754.6 and 841.6 kJ/mol were investigated. Representatives of different compound classes, including alcohols, ketones, esters, and nitroaromatics were analyzed. The IM spectra resulting from IMR of H3S+ and H3O+ with these substances are similar in structure, i.e., protonated monomer and dimer ion peaks are found depending on the analyte concentration.  相似文献   

14.
Kinetic parameters characterizing the oxidation of sodium(2-1H2) propionate and the oxidation of sodium (2-2H2) propionate with permanganate in water solutions have been determined and compared with kinetic parameters derived from the investigation of the deuterium isotope effect on the activation parameters in the permanganate and manganate oxidation of sodium (2-3H2) propionate in water solutions of sodium hydroxide.  相似文献   

15.
To use water as the source of electrons for proton or CO2 reduction within electrocatalytic devices, catalysts are required for facilitating the proton‐coupled multi‐electron oxygen evolution reaction (OER, 2 H2O→O2+4 H++4 e). These catalysts, ideally based on cheap and earth abundant metals, have to display high activity at low overpotential and good stability and selectivity. While numerous examples of Co, Mn, and Ni catalysts were recently reported for water oxidation, only few examples were reported using copper, despite promising efficiencies. A rationally designed nanostructured copper/copper oxide electrocatalyst for OER is presented. This material derives from conductive copper foam passivated by a copper oxide layer and further nanostructured by electrodeposition of CuO nanoparticles. The generated electrodes are highly efficient for catalyzing selective water oxidation to dioxygen with an overpotential of 290 mV at 10 mA cm−2 in 1 m NaOH solution.  相似文献   

16.
A scaling relation is proposed which interrelates measurable quantities in the field of atomic collision physics performed with high velocity H+, H 2 + and H 3 + -ions. The relation may be written as $$Q(H^ + ) - 2*Q(H_2^ + ) + Q(H_3^ + ) = 0,$$ whereQ denotes an excitation or ionization cross section or a total or differential secondary particle yield evaluated at the same projectile velocity. The scaling relation will be tested by comparison with experimental data of yields and spectra from ion-induced secondary electron emission measurements and with cross section data for excitation and ionization of atoms and molecules. In general very good agreement is observed for high projectile velocities (v>2 a.u.).  相似文献   

17.
A study has been made of the effect of an irreversibly adsorbed iodide layer on the anodic oxidation of formic acid at a platinized platinum electrode. It is shown that, in the presence of the preadsorbed iodide layer, the oxidation process obeys the following rate expression, i=nF kcα g(θI) exp(αanFφr/RT where α≈0.75 and αan≈0.5. This is explained in terms of the following rate-determining step, (HCOOH)ads→C*OOH+H++e and involves the adsorption of formic acid on the iodide covered surface. A strong catalytic effect of the iodide layer is observed; the function g (θI) passes through two maxima at θI values of 0.15 and 0.53. It is suggested that these effects arise from a coverage-dependent variation of bond strength between the adsorbed iodide and platinum.  相似文献   

18.
Hydration of alkylammonium ions under nonanalytical electrospray ionization conditions has been found to yield cluster ions with more than 20 water molecules associated with the central ion. These cluster ion species are taken to be an approximation of the conditions in liquid water. Many of the alkylammonium cation mass spectra exhibit water cluster numbers that appear to be particularly favorable, i.e., “magic number clusters” (MNC). We have found MNC in hydrates of mono- and tetra-alkyl ammonium ions, NH3(C m H2m+1)+(H2O) n , m=1–8 and N(C m H2m+1) 4 + (H2O) n , m=2–8. In contrast, NH2(CH3) 2 + (H2O) n , NH(CH3) 3 + (H2O) n1 and N(CH3) 4 + (H2O) n do not exhibit any MNC. We conjecture that the structures of these magic number clusters correspond to exohedral structures in which the ion is situated on the surface of the water cage in contrast to the widely accepted caged ion structures of H3O+(H2O) n and NH 4 + (H2O) n .  相似文献   

19.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Membrane catalytic deprotonation of water (water splitting) has been studied on the base of a new model which suggests that water molecules are prepolarized by H+-affinited and OH-affinited fixed charged groups of membrane before their dissociation is enhanced by electric field. Introducing some anion selective groups such as Mg(OH)2·xH2O or amine into a cation selective perfluorosulfonated membrane can initiate a dramatic water splitting effect and give rise to new high frequency peaks on the OH and OD stretching region of IR spectra. This supports the hypothesis that some water molecules were affected by the surrounding electrical field from the bipolar membrane-like structure. Perfluorocarboxylic membrane was also tested in a electrolytic cell and it causes H+ ion fluxes much larger than Nafion-type membrane. We classify the effect as membrane catalytic deprotonation of carboxylic acid group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号