首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
丁欣 《物理学报》2008,57(1):211-216
This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO$_{4}$ laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5\,$\mu$m and the temperature of 140\du, the maximum idler output power of 155\,mW at 3.86\,$\mu$m has been achieved when the 808\,nm pump power is 8.5\,W, leading to an optical-to-optical conversion efficiency of 1.82{\%}.  相似文献   

2.
This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.  相似文献   

3.
We report a continuous-wave (cw) 532-nm-pumped singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate. The pump source is a commercial 5-W cw diode-pumped, multilongitudinal-mode, intracavity-doubled Nd:YVO(4) laser. Using a four-mirror ring SRO cavity and single-pass pumping, we achieved subwatt internal oscillation threshold, 56% quantum efficiency, and output tuning from 917 to 1266 nm.  相似文献   

4.
Garashi A  Arie A  Skliar A  Rosenman G 《Optics letters》1998,23(22):1739-1741
We report what is to our knowledge the first demonstration of a continuous-wave optical parametric oscillator (OPO) based on periodically poled KTiOPO(4) . The 10-mm-long flux-grown crystal had a quasi-phase-matched period of 9mum . The pump source was a miniature frequency-doubled Nd:YAG laser, and the threshold power of this doubly resonant device was 51 mW. The OPO was operated near room temperature. The signal and the idler wavelengths could be tuned in the range 1037-1093 nm by variation of the crystal temperature (32-38 degrees C) and the cavity length. Unlike in other nonlinear crystals, green-induced infrared absorption was not observed up to the highest pumping intensity of approximately 4.5kW/cm(2) .  相似文献   

5.
We report on optical parametric oscillators (OPO's) based on periodically poled RbTiOAsO(4) (PP RTA), which are pumped by Q -switched solid-state lasers. With a diode-pumped Nd:YVO(4) laser (pulse energy, 800microJ ; pulse duration, 5.5 ns; repetition rate, 1 kHz) the PP RTA OPO generated 1.58-microm signal and 3.26-microm idler radiation with a signal pulse energy of 45microJ . The large aperture of 3 mmx3 mm of the PP RTA crystal also permitted OPO operation with pump pulse energies as high as 65 mJ, provided by a flash-lamp-pumped Q -switched Nd:YAG laser (pulse duration, 20 ns; repetition rate, 10 Hz). With this pump source the OPO generated signal pulse energies as high as 17 mJ, corresponding to an efficiency of 26%. The performance of this OPO shows that large-aperture PP RTA crystals are well suited for pulsed nanosecond OPO operation with pump pulse energies of tens of millijoules.  相似文献   

6.
We describe a compact all-solid-state continuous-wave, singly resonant optical parametric oscillator (SRO) based on periodically poled RbTiOAsO4. The SRO is pumped at 1.064 microm by a Nd:YVO4 laser, which is itself pumped by a 3-W diode laser. Using the intracavity technique produced an oscillation threshold for the SRO of only 1.6 W (diode-laser power). For 3 W of diode pump power some 65 mW was obtained in the (nonresonant) idler (wavelength 3.52 microm). Temperature tuning over the range 10-100 degrees C resulted in tuning ranges of 1.52-1.54 and 3.41-3.54 microm for the signal and the idler waves, respectively. Importantly, relaxation oscillations were absent.  相似文献   

7.
We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO(4) that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5microm , and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in ~1-ps pulses were obtained at 33% extraction efficiency.  相似文献   

8.
We present results from what we believe is the first reported example of an optical parametric oscillator based on periodically poled RbTiOAsO(4). The oscillator is pumped by a femtosecond self-mode-locked Ti:sapphire laser and, with a single-grating 2-mm-long crystal and one mirror set, a combination of pump and cavity-length tuning provided wavelength coverage from 1060 to 1225nm (signal) and 2.67 to 4.5 microm (idler). Average output powers were as much as 120mW in the signal and 105mW in the idler and interferometric autocorrelations recorded at signal and idler wavelengths of 1.1 and 3.26 microm, respectively, imply pulse durations of 125 and 115fs, respectively.  相似文献   

9.
We report a continuous-wave, doubly resonant optical parametric oscillator (OPO) based on the nonlinear material periodically poled KTiOPO(4) and its application to spectroscopy. The OPO, which is pumped by a diode-pumped frequency-doubled Nd:YLF laser at 523 nm, has a low pump-power threshold of 25 mW and can deliver 10 mW of single-frequency output at 1.65 mum for a pump power of 200 mW. The idler wavelength can be temperature tuned at a rate of 0.73 nm/( degrees )C , and smooth tuning of the output frequency over ~3 GHz is achieved by smooth tuning of the pump laser. We demonstrate the practicality of the OPO by recording the absorption spectrum of methane near 1649 nm.  相似文献   

10.
We report a femtosecond optical parametric oscillator based on a periodically poled KTiOPO(4) crystal for which quasi-phase matching is achieved with a 24-microm poling period. The singly resonant parametric oscillator, synchronously pumped by a Ti:sapphire laser at a wavelength of 758 nm, generates a signal at 1200 nm and an idler at 2060 nm. The maximum signal power conversion efficiency of the device is 22% with a pump depletion of 69%. We tune the signal wavelength over a 200-nm band by changing the cavity length. In addition, pump wavelength tuning provides output tunability in the 1000-1235-nm range.  相似文献   

11.
Performance characteristics of a continuous-wave intracavity optical parametric oscillator are described by use of an experimental arrangement comprising a KTP singly resonant oscillator located within a Ti:sapphire laser cavity and analyzed by use of a steady-state model. Internal and external powers, circulating fields, tuning ranges, spectral bandwidths, and amplitude-stability levels are measured and discussed. The nonresonant idler tunes from 2.53 to 2.87 microm, delivers a maximum output power of approximately 0.4W and displays long-term amplitude-stable operation. The total downconverted power approaches the optimum power coupled out of the Ti:sapphire laser in the absence of frequency conversion.  相似文献   

12.
We report a compact quasi-phase-matched optical parametric oscillator (OPO) using periodically poled MgO-doped LiNbO3 with different grating periods. The OPO is pumped by a diode-pumped passively Q-switched Nd:YAG laser providing 4.8-ns pulses at 5.4-kHz repetition rate. The OPO generates signal and idler wavelengths tunable in the ranges of 1.5– and 2.8–, respectively, by changing the crystal temperature between room temperature and . The temperature-dependent Sellmeier equation for the extraordinary refractive index of MgO-doped LiNbO3 is modified in the Mid-IR region, which gives an accurate prediction of the experimental temperature-tuning results. The linewidth of the signal wave is in the range of 0.5–1.0 nm without any controlling element.  相似文献   

13.
丁欣  盛泉  陈娜  禹宣伊  王睿  张衡  温午麒  王鹏  姚建铨 《中国物理 B》2009,18(10):4314-4318
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406~nm to 1513~nm is obtained. At a PPLN grating period of 29~μ m and a temperature of 413~K, a maximum signal output power of 820~mW at 1500~nm is achieved when the 808~nm pump power is 10.9~W, leading to an optical-to-optical conversion efficiency of 7.51%.  相似文献   

14.
Conical pumping was used in a periodically poled KTiOPO(4) optical parametric oscillator for singly resonant idler generation in a nearly diffraction-limited axial beam. A single signal-idler pair was generated over the whole tuning range by use of asymmetric reflectivity of the OPO mirrors. Pump depletion of 40% and total conversion efficiency of 27% were obtained. Additional OPO tuning capability was demonstrated by adjustment of the angle of the conical pump beam.  相似文献   

15.
We present a cw, Nd:YAG-pumped singly resonant single-frequency narrow-linewidth high-power optical parametric oscillator with idler tuning from 3.7 to 4.7 microm. In this spectral range the absorption of the idler wave in the LiNbO3 crystal is significant, causing the oscillation threshold to increase with a subsequent decrease in output power from 1.2 W at 3.9 microm to 120 mW at 4.7 microm. The optical parametric oscillator's cavity was stabilized and mode-hop tuned with a rotatable solid etalon but with a subsequent reduction in idler power of as much as 50%. We demonstrated the usefulness for spectroscopy by recording the photoacoustic spectrum of a strong CO2 absorption, using a 24-GHz continuous idler scan.  相似文献   

16.
A high-power picosecond optical parametric oscillator (OPO) based on a 47-mm periodically poled lithium niobate crystal is described. More than 12 W of total average power-almost 8 W of signal power at 1.85 microm and more than 4 W of idler radiation at 2.5 microm -is simultaneously extracted from less than 18 W of average pump power. The OPO is synchronously pumped by 80-ps (FWHM) cw mode-locked pulses at 1.064 microm , and its output is tunable from 1.7 to 2.84microm . Nearly transform-limited signal pulses are obtained following the introduction of two intracavity etalons.  相似文献   

17.
We demonstrate an angle-tuned signal-resonated optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN) pumped by a diode-pumped Nd:YVO4 laser. 1499.8 - 1506.6 nm of signal wavelength is achieved at 140℃ by rotating a 29-μm period PPLN from 0° - 10.22° in the x-y plane while keeping the pump wave vertical to the resonator mirrors. Two pairs of the signal and idler waves of the same wavelengths can be achieved symmetrically for each pair of angles of rotation with same absolute value and opposite sign. Theoretical analyses on angle-tuned PPLN-OPO with pump wave vertical to the resonator mirrors are presented and in good agreement with our experimental results. It is also found that all interacting waves in the cavity (not inside the crystal) are always collineax for PPLN-OPO with the pump wave vertical to the resonator mirrors while phase-matching is noncollinear within the crystal.  相似文献   

18.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

19.
Periodically poled lithium niobate has been used in a singly resonant optical parametric oscillator pumped by a cw mode-locked Ti:sapphire laser. A tuning range of 1.15 to 2.4 microm was achieved when the pump was tuned, and this range was limited only by the mirror reflection bandwidth. Thresholds as low as 18 mW and an overall slope efficiency of 44% were observed, with average output powers of 130 mW (70 mW) for the signal (idler).  相似文献   

20.
We describe a compact all-solid-state continuous-wave singly resonant optical parametric oscillator (SRO) with a minimal pump-power requirement. The SRO is based on periodically poled LiNbO(3) as the nonlinear material and is pumped by a 1-W diode-pumped Nd:YVO(4) minilaser at 1.064 microm . By exploiting the intracavity pumping technique in a 50-mm crystal, we have achieved SRO operation threshold at a diode pump power of only 310 mW.At 1 W of input diode power, the SRO delivers 70 mW of output power in the nonresonant idler at 3.66 microm , at a photon conversion efficiency of 55%. Multiparameter tuning of the SRO yields a signal wavelength range from 1.45 to 1.60 microm and an idler wavelength range from 3.16 to 4.02 microm in the mid infrared. The device is characterized by robust turnkey operation and long-term amplitude-stable performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号