首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dispersion of C60 fullerenes in water and ethanol in the presence of nonionic surfactants, ethylene oxide derivatives, was studied. It was found that the quality of the dispersion process and the stability of dispersions depend on the structure, degree of oxyethylation, and concentration of surfactants. The optimal conditions are found in which stable fullerene dispersions are obtained as ingredients of cosmetic preparations with antioxidant properties.  相似文献   

2.
The temperature stability of aqueous dispersions of hydrophobic monodisperse silica particles stabilized with nonionic surfactants has been investigated. Adsorption isotherms in conjunction with surface tension measurements showed that the surfactant formed a monolayer on the surface of the particles, where the adsorbed amount depended on the molecular weight of the ethylene oxide headgroup. The temperature stability of these dispersions has been measured by a standard turbidimetric technique and visual observations in terms of their critical flocculation temperature (CFT). Parameters controlling the CFT of the individual dispersions stabilized with a monolayer of surfactant include the thickness of the steric layer, the particle size, and the volume fraction of the particles. Calculations show that the van der Waals attraction between the particles with adsorbed polymer layers increases as the temperature of the dispersion increases, and this largely accounts for the observed CFT behavior.  相似文献   

3.
Aqueous dispersions of polyaniline were synthesized in the presence of various surfactants. Polyvinyl alcohol and polymeric surfactants with various chain lengths of polyoxyethylene fragments served as stabilizers. It was shown that it is advisable to use polymeric surfactants with side polyoxyethylene fragments to improve the sedimentation stability of aqueous dispersions of polyaniline. It was found that the particle size distribution of aqueous dispersions depends on the composition of the stabilizer used. Raising the pH value of aqueous dispersions to 8 makes it possible to substantially raise the sedimentation stability. The effect of a surfactant used to stabilize the dispersed system on the electrokinetic potential was examined.  相似文献   

4.
The effect ofn-butyl glycol ethers used as cosurfactants on the microemulsions formulated with two nonionic surfactants, hexaoxyethylene glycol monolauryl ether and sorbitan monolaurate, is presented on ternary phase diagrams. The solubilization parameters as well as isothermal invariant points (IIP) of microemulsions were correlated with the solubility parameters of cosurfactants. An optimum solubility parameter of cosurfactants was established around 9 (cal/cm3)1/2 where both IIP and solubilization parameters are optimal for water and oil solubilization with the lowest concentration of amphiphilic compounds. The mixture of cosurfactants can be used to obtain a certain transition on the phase diagram and so to achieve certain characteristics for microemulsions, especially to tailor the solvency of the system.On leave from the University of Bucharest Department of Physical Chemistry Bdul Republicii 13 Bucharest, Romania  相似文献   

5.
The fluorescence spectra of Merocyanine 540 (MC 540), an anionic dye have been studied in aqueous solution of different nonionic surfactants. The results show the enhancement and red shift of fluorescence bands, indicating electron transfer from the surfactants to the excited dye. This is also supported by the photovoltage generation by the dye-surfactant systems in a photoelectrochemical cell. Possible mechanisms of the excited state interaction and photovoltage generation have been suggested. From the thermodynamic, spectrophotometric and photogalvanic results, it can be concluded that the electron donating abilities of the nonionic surfactants towards MC 540 are in the order: Tween 80 approximately Tween 60>Tween 40>Tween 20>Triton X-100. The spectral studies (both absorption and fluorescence) of Merocyanine 540 have been carried out in solvents of varying polarities as well as in an aqueous micellar dispersions of nonionic surfactants. The Stokes shifts of the fluorescence from the absorption have been found to increase with increasing polarity of the solvents. An attempt has been made to ascertain the polarity of the microenvironment of Merocyanine 540 in the nonionic surfactant media from the photophysical characteristics of the dye in different solvents of known polarities.  相似文献   

6.
Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting β-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by β-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, β-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that β-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications.  相似文献   

7.
The stability of poly(dimethylsiloxane) (PDMS) oil-in-water emulsions has been investigated in the presence of added NaCl as well as in the presence of added surfactant. The emulsions were prepared using a combination of nonionic (C(x)E(y), x and y represent the number of methylene (C) and ethylene oxide (E) groups, respectively) and cationic (quarternary alkylammonium) surfactants. The droplets were observed to exhibit weak flocculation in the presence of high NaCl concentration (1 M). Phase separation and optical microscopic observations revealed that the principal mechanism for emulsion destabilization at high salt concentration was coalescence, which was accelerated at elevated temperature (50 degrees C). The effective coalescence rate for diluted emulsions was investigated using photon correlation spectroscopy. The small effective Hamaker constant for PDMS is the primary reason for the slow rate of coalescence observed for the emulsions at neutral pH in the presence of NaCl. The stability of PDMS emulsions to flocculation is qualitatively similar to that reported for low Hamaker constant dispersions (e.g., microgel particles). Addition of cationic surfactants (cetyltrimethylammonium chloride and dodecyl dimethylbenzylammonium chloride) to the negatively charged droplets after preparation was shown to decrease the emulsion stability once the surfactant concentration exceeded the CMC. Electrophoretic mobility measurements showed that added cationic surfactant changed the sign of the droplet charge from negative to positive at concentrations well below the CMC. Charged micelles of the same sign as the droplets are electrostatically excluded from close approach to the droplet surface within a distance (varepsilon) which results in depletion flocculation. Copyright 2000 Academic Press.  相似文献   

8.
The porosity of polymer materials produced by polymerizing dispersion media of highly concentrated emulsions may be predicted, provided that the emulsions are stable. The study of the stability of water-in-oil (W/O) emulsions containing styrene as a dispersion medium at 25 and 65°C has shown that emulsions with a dispersed phase fraction of 0.75 and sorbitan monooleate concentrations of 1.5–20.0 vol % are stable to coalescence but are unstable to sedimentation. Emulsions with a dispersed phase fraction of 0.95 are stable to both coalescence and sedimentation at sorbitan monooleate concentrations of 10–20 vol %. Open-pore polymer materials are formed from emulsions with dispersed phase fractions of 0.75 and 0.95 at sorbitan monooleate concentrations of 2.0–3.5 and 10–12 vol %, respectively. At a dispersed phase fraction of 0.75 and a sorbitan monooleate concentration of <2 vol %, a multiple O/W/O emulsion is formed, the polymerization of which yields a porous polymer material containing spherical polystyrene particles inside pores. At higher surfactant concentrations in emulsions with dispersed phase fractions of 0.75 and 0.95 partly destroyed porous materials are formed.  相似文献   

9.
When preparing the mixing of acrylic polymer and copolymer dispersions with alkyd oligomer emulsions it is necessary to provide agregative stability of the combined dispersions. It was established that transfer of polymer particles mass of highly dispersed systems onto particles of less dispersed systems is seen during geterocoagulation of combined dispersions. Optimal physical-chemical and hydrodynamic conditions of the emulsification of alkyd oligomers with the required dispersion degree for producing the mixed systems were established. The combined dispersion stability is determined from the ratio of electrokinetic potentials of particles of polymers and oligomers being combined as well as ratio of their isoelectric points. The zone of dispersion incompatibility was established by method of microelectrophoresis.  相似文献   

10.
The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.  相似文献   

11.
Degradation of kinetically-stable o/w emulsions   总被引:3,自引:0,他引:3  
This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.  相似文献   

12.
Aqueous dispersions of doped polyaniline were synthesized in the presence of mixtures of a carboxylcontaining polymeric surfactant with low- and high-molecular-mass stabilizers. Polyaniline aqueous dispersions obtained using a mixture of carboxyl-containing polymeric and low-molecular-mass surfactants are characterized by high dispersity and narrow particle-size distribution but low sedimentation stability. The doping agent influences the stability of the dispersions prepared in the presence of polymeric and low-molecular-mass surfactants. The dispersions obtained using a mixture of macromolecular surfactants are characterized by larger particle size but higher sedimentation stability due to increased viscosity of the system.  相似文献   

13.
采用共沉淀法制备了3种形态的MgAl双金属氢氧化物颗粒的水分散体系, 并以其为乳化剂制备了Pickering乳液. 比较了3种颗粒的分散体系及其稳定的Pickering乳液的性质. X射线衍射(XRD)和透射电子显微镜(TEM)表征结果表明, 低结晶度的颗粒以形状不规则、 结构疏松、 表面粗糙的絮状体形式分散于水中, 且颗粒尺寸随高速搅拌分散时间的延长而减小; 而良好结晶的颗粒以形状规则、 结构致密、 表面平滑的六角片存在于水中. Zeta电位测试表明, 3种颗粒在水中均带正电荷, NaCl可降低颗粒的Zeta电位而使其发生絮凝, 但良好结晶颗粒的分散体系在更高NaCl浓度时才出现明显沉淀. 分别采用3种双金属氢氧化物颗粒/NaCl水分散体系制备了水包油(O/W)型Pickering乳液, 并比较了乳液的稳定性. 结果表明, NaCl的引入在一定程度上可提高3类乳液的稳定性; 良好结晶颗粒稳定乳液的能力强于低结晶度的颗粒; 对于低结晶度颗粒, 大颗粒稳定乳液的能力比小颗粒更强.  相似文献   

14.
The effect of the kind of stabilizers on the formation of "onionlike" multilayered polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) particles was studied. The release of toluene from PS-b-PMMA/toluene droplets dispersed in aqueous medium resulted in the formation of onionlike multilayered structures in the particles for all stabilizers used. However, the surface composition of the particles was strongly affected by the kind of stabilizer. When sodium dodecyl sulfate (SDS) and poly(vinyl alcohol) (PVA) were used as stabilizers, the surface of the particles was occupied by PMMA phase. On the other hand, in the cases of Emulgen 911 (polyoxyethylene nonylphenyl ether) and Tween 80 (polyoxyethylene sorbitan monooleate) as stabilizers, the PS phase occupied the surfaces. These results for SDS, PVA, and Emulgen 911 are consistent with the surface layer of the PS-b-PMMA particles being occupied by the polymer phase, which gives a lower interfacial tension than that of another phase. However, in the case of Tween 80, interfacial tensions between water and toluene solutions of the polymer showed almost the same values making it impossible to predict the surface polymer phase.  相似文献   

15.
The correlation between a dispersed phase/dispersion medium interfacial tension σ at a storage temperature of 22°C and the dispersity and stability of oil-in-water miniemulsions, which result from temperature-induced phase inversion, has been revealed for hydrocarbon/polyoxyethylene(4)lauryl ether/water systems (in the presence and absence of felodipine) with the help of conductometry, tensiometry, and dispersion analysis. At σ < 3.5 × 10–6 N/m, oil-in-water nanoemulsions, which have narrow monomodal particle size distributions and are stable for a month, are a fortiori formed. Felodipine has been shown to serve as a cosurfactant, which is incorporated into the adsorption layer of a basic stabilizing nonionic surfactant. Therewith, σ values increase and the temperature of phase inversion decreases, while the concentration of the basic surfactant in an optimal composition must be substantially reduced. A heptane/water nanoemulsion (droplet size of 75 nm) stabilized with a basic nonionic surfactant and Tween 80 exhibits a high solubilization capacity with respect to felodipine and ensures its efficient mass transfer through a model membrane.  相似文献   

16.
We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.  相似文献   

17.
Molecular-surfactant-stabilized emulsions are susceptible to coalescence and Ostwald ripening. Amphiphilic particles, which have a much stronger anchoring strength at the interface, could effectively alleviate these problems to form stable Pickering emulsions. Herein, we describe a versatile method to fabricate biocompatible amphiphilic dimer particles through controlled coprecipitation and phase separation. The dimer particles consist of a hydrophobic PLA bulb and a hydrophilic shellac–PEG bulb, thus resembling nonionic molecular surfactants. The size and diameter ratio of the dimer particles are readily tunable, providing flexible control over the water/oil interfacial curvature and thus the type of emulsion. The particle-stabilized emulsions were stable for a long period of time and could be destabilized through a pH-triggered response. The biocompatible amphiphilic dimer particles with tunable morphology and functionality are thus ideal colloidal surfactants for various applications.  相似文献   

18.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

19.
The purpose of the present study was to formulate microemulsion systems comprised of polyoxyethelene sorbitan ester surfactants (Tweens) + cosurfactant + water + oil (toluene) and to investigate their potential use as absorbents for the removal of toluene from air. Toluene is an example of a volatile organic compound (VOC). The microemulsions formed are stabilized by the nonionic surfactants (Tweens) and toluene. The results indicate that Tween-60 is superior to other Tween surfactants, and the optimum value for the hydrophile-lipophile balance (HLB) is 15. The performances of the cosurfactants followed the order n-butylamine>alcohol>butyric acid. The experimental results showed that the HLB value is more meaningful than the Bansal, Shah, O’Connell (BSO) equation for representing microemulsion systems. Comparative tests of this new absorbent system were performed in a double-stirred reactor, and the experimental absorption results were consistent with the phase diagram. Nonionic surfactant microemulsions have a significant absorption enhancement for toluene, as indicated by as much as 80.81% of toluene being present in the phase composition diagram, which thus have great prospects in air pollution remediation.  相似文献   

20.
Molecular‐surfactant‐stabilized emulsions are susceptible to coalescence and Ostwald ripening. Amphiphilic particles, which have a much stronger anchoring strength at the interface, could effectively alleviate these problems to form stable Pickering emulsions. Herein, we describe a versatile method to fabricate biocompatible amphiphilic dimer particles through controlled coprecipitation and phase separation. The dimer particles consist of a hydrophobic PLA bulb and a hydrophilic shellac–PEG bulb, thus resembling nonionic molecular surfactants. The size and diameter ratio of the dimer particles are readily tunable, providing flexible control over the water/oil interfacial curvature and thus the type of emulsion. The particle‐stabilized emulsions were stable for a long period of time and could be destabilized through a pH‐triggered response. The biocompatible amphiphilic dimer particles with tunable morphology and functionality are thus ideal colloidal surfactants for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号