首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is studied by means of a quantum Monte Carlo technique. Our calculation predicts a quantum phase transition from a gas to a solid phase when the density increases. In the gas phase, the condensate fraction is calculated as a function of the density. Using the Feynman approximation, the collective excitation branch is studied and the appearance of a roton minimum is observed. The results of the static structure factor at both sides of the gas-solid phase are also presented. The Lindemann ratio at the transition point becomes gamma=0.230(6). The condensate fraction in the gas phase is estimated as a function of the density.  相似文献   

5.
The present work is essentially concerned with the development of statistical theory for the low temperature dislocation glide in concentrated solid solutions where atom-sized obstacles impede plastic flow. In connection with such a problem, we compute analytically the external force required to drag an elastic string along a discrete two-dimensional square lattice, where some obstacles have been randomly distributed. Some numerical simulations allow us to demonstrate the remarkable agreement between simulations and theory for an obstacle density ranging from 1% to 50% and for lattices with different aspect ratios. The theory proves efficient on the condition that the obstacle-chain interaction remains sufficiently weak compared to the string stiffness.  相似文献   

6.
7.
In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.  相似文献   

8.
9.
10.
The spectrum of magnetoelastic waves in a periodic structure of alternating ferromagnetic and nonmagnetic layers was studied. In the case of ferromagnetic layers with easy magnetization axes parallel to the layer surfaces, an orientational phase transition induced by an external tangential magnetic field He was considered. The formation of an inhomogeneous phase with a spatially modulated order parameter, which is caused by the magnetization being coupled through magnetostriction to lattice strains near the interfaces separating the magnetoelastic from elastic media, is predicted. It is shown that at a certain critical field in excess of the orientational phase transition field in the system without magnetostriction, a magnetoelastic wave propagating in a direction parallel to the in-plane magnetization vector M becomes unstable at finite values of the wave vector and condenses into a magnetostriction domain structure. A phase diagram in the (L, T, He) coordinates is constructed, and the regions of existence of thermodynamically equilibrium collinear, canted, and domain phases are established (L and T are the thicknesses of the ferromagnetic and nonmagnetic layers, respectively).  相似文献   

11.
The effect of the magnetic field on the single-particle density of states of a two-dimensional random system at finite temperatures is studied in the lowest order of a mutual interaction between electrons. We describe how the correction from the impurity-induced particle-particle correlation to the density of states is suppressed by the field.  相似文献   

12.
The concentration dependences of the elastic constants of the two-dimensional Si x C1 − x system have been investigated with the use of the Harrison bonding-orbital method and the Keating model. The central and non-central force constants and the Grüneisen parameter have been considered by means of the bonding-orbital method. All quantities under consideration have been shown to exhibit a nonlinear behavior during the transition from graphene to silicene. A nontrivial role of the short-range repulsion has been discussed. The second-order and third-order elastic constants, the pressure dependences of the second-order elastic constants, as well as the Poisson’s ratio and Young’s modulus have been investigated in the Keating model. It has been found that the elastic constants and Young’s modulus change almost linearly upon the transition from graphene to silicene, whereas the other quantities under consideration exhibit nonlinearity.  相似文献   

13.
The dispersion curves of bulk acoustic waves in systems of circular holes made in an isotropic elastic material are calculated by the finite-element method for the cases of the square and hexagonal symmetries of the hole arrangement. The presence of total band gaps for acoustic waves is demonstrated, and the presence of inverse quasi-transverse first-order modes is revealed. For the hexagonally symmetric system of holes, total band gaps are found in the region of higher-order modes. For waves with a purely shear polarization, the imaginary part of the wave number in the first band gap is calculated.  相似文献   

14.
Journal of Statistical Physics - Monte Carlo calculations were carried out for a two-dimensional Ising model of a binary alloy with nearest-neighbor attractive interactions between like atoms. The...  相似文献   

15.
16.
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole–dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.  相似文献   

17.
We have studied the effect of optically-induced random, anisotropic disorder on the magnetoresistance of a Al0.3Ga0.7As/ GaAs two-dimensional electron system by exposing the heterojunction to an asymmetric laser speckle pattern. Changes in the amplitude of the Shubnikov-de Haas oscillations can be explained in terms of easy and hard conductivity paths parallel and perpendicular to the long axis of the oval speckle grains. We also observe corresponding changes in the electron scattering rates.  相似文献   

18.
We demonstrate a rectification phenomenon for overdamped particles interacting with a 2D symmetric periodic substrate when driven with a dc and a circular ac drive. As a function of longitudinal dc amplitude, the longitudinal velocity increases in a series of quantized steps distinct from Shapiro steps with transverse rectification occurring near these transitions. The rectification phenomenon is explained using symmetry arguments and a simple model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号