首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plastic deformation of small crystals occurs by power-law distributed strain avalanches whose universality is still debated.In this work we introduce a continuum crystal plasticity model for the deformation of microsized single crystals,which is able to reproduce the main experimental observations such as Row intermittency and statistics of strain avalanches.We report exact predictions for scaling exponents and scaling functions associated with random distribution of avalanche sizes.In this way,the developed model provides a routine for a quantitative characterization of the statistical aspects of strain avalanches in microsized single crystals.  相似文献   

2.
The properties of the avalanche processes that develop on a dynamical lattice, the structure of links in which changes due to a specific characteristic of each lattice node, namely, its “activity,” which determines the probability of connection of a certain node with neighboring nodes in one step of lattice evolution. The statistics of the sizes of the avalanches appearing in the lattice system is studied as a function of the node activity and the link lifetime (the lifetime of the links formed in the system). It is analytically and numerically shows that the type of avalanche dynamics in the system changes as a function of these parameters. The following three regimes can take place in the system: (1) avalanches of any sizes, from small to catastrophic, can appear, which is reflected in the power-law behavior of the probability density function of the appearance of avalanches of certain sizes; (2) avalanches of a certain average size mainly appear in the system, and the probability density is close to that of a normal distribution; and (3) transient regime, where the probability density function of the appearance of avalanches of certain sizes is close to an exponential function. These results open up the possibilities of controlling the behavior of a complex system; in particular, they can be used to prevent catastrophic avalanches by changing the link lifetime and the average node activity.  相似文献   

3.
We report results from a statistical analysis of avalanches of cohesive powders in a slowly rotated drum. Interparticle adhesion, which diminishes the effect of inertia and whose magnitude strongly fluctuates in a local scale, makes avalanches in slightly cohesive powders eligible for displaying self-organized criticality. However, the results show that avalanche sizes, time interval between avalanches, and maximum stable angle do not follow a power-law distribution. Otherwise, these parameters scale with powder cohesiveness.  相似文献   

4.
The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.  相似文献   

5.
The statistics of damage avalanches during a failure process typically follows a power law. When these avalanches are recorded only near the point at which the system fails catastrophically, one finds that the power law has an exponent which is different from that one finds if the recording of events starts away from the vicinity of catastrophic failure. We demonstrate this analytically for bundles of many fibers, with statistically distributed breakdown thresholds for the individual fibers and where the load is uniformly distributed among the surviving fibers. In this case the distribution D(Delta) of the avalanches (Delta) follows the power law Delta-xi with xi=3/2 near catastrophic failure and xi=5/2 away from it. We also study numerically square networks of electrical fuses and find xi=2.0 near catastrophic failure and xi=3.0 away from it. We propose that this crossover in xi may be used as a signal of imminent failure.  相似文献   

6.
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.  相似文献   

7.
We study the zero temperature properties of hysteresis in a site-diluted Ising model. The model exhibits a critical line separating a disordered from an incipient ferromagnetic ground state: the shape of the hysteresis loop changes from a smooth cycle (formed as a sequence of tiny avalanches) to a sharp cycle exhibiting a macroscopic reversal of the magnetization for a given value of the field (infinite avalanche). Criticality is characterized by power-law distribution of avalanche sizes. Model predictions are contrasted with experimental results obtained in Cu–Al–Mn alloys.  相似文献   

8.
R.C. Buceta  D. Muraca 《Physica A》2011,390(23-24):4192-4197
The Barkhausen jumps or avalanches in magnetic domain-walls motion between successive pinned configurations, due the competition among magnetic external driving force and substrum quenched disorder, appear in bulk materials and thin films. We introduce a model based in rules for the domain wall evolution of ferromagnetic media with exchange or short-range interactions, that include disorder and driving force effects. We simulate in 2-dimensions with Monte Carlo dynamics, calculate numerically distributions of sizes and durations of the jumps and find power-law critical behavior. The avalanche-size exponent is in excellent agreement with experimental results for thin films and is close to predictions of the other models, such as like random-field and random-bond disorder, or functional renormalization group. The model allows us to review current issues in the study of avalanches motion of the magnetic domain walls in thin films with ferromagnetic interactions and opens a new approach to describe these materials with dipolar or long-range interactions.  相似文献   

9.
Michal Bregman 《Physica A》2008,387(10):2328-2336
A surprisingly large number of systems in nature are thought to be governed by internal dynamics which causes avalanches of various sizes. In such systems energy, which is delivered from outside, is redistributed as a result of the occurrence of localized avalanches. Starting an avalanche requires that some threshold condition be satisfied. Random driving (energy input) brings the system into a strongly inhomogeneous state, so that the probability of triggering an avalanche in a large part of the system is small. In most physical systems energy redistribution may occur due to diffusive processes without avalanches. Diffusion also makes the system more uniform, making large avalanche triggering more probable. The observed behavior of a such system may crucially depend on the competition between diffusion and driving. In this paper, the effects of diffusive processes are investigated using a dissipative, isotropic one-dimensional model, in which avalanches can propagate in both directions. It is shown that the system behavior changes progressively as the diffusion rate increases. In the absence of diffusion, many small avalanches are triggered. Increasing the diffusion rate gradually suppresses these small avalanches and leads to the development of large, quasi-periodic bursts.  相似文献   

10.
We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic lattices for dimensions D>/=2. Waves represent relaxation processes which do not contain multiple toppling events. We investigate bulk and boundary waves by means of their correspondence to spanning trees, and by extensive numerical simulations. While the scaling behavior of avalanches is complex and usually not governed by simple scaling laws, we show that the probability distributions for waves display clear power-law asymptotic behavior in perfect agreement with the analytical predictions. Critical exponents are obtained for the distributions of radius, area, and duration of bulk and boundary waves. Relations between them and fractal dimensions of waves are derived. We confirm that the upper critical dimension D(u) of the model is 4, and calculate logarithmic corrections to the scaling behavior of waves in D=4. In addition, we present analytical estimates for bulk avalanches in dimensions D>/=4 and simulation data for avalanches in D相似文献   

11.
We formulate a stochastic equation to model the erosion of a surface with fixed inclination. Because the inclination imposes a preferred direction for material transport, the problem is intrinsically anisotropic. At zeroth order, the anisotropy manifests itself in a linear equation that predicts that the prefactor of the surface height–height correlations depends on direction. The first higher order nonlinear contribution from the anisotropy is studied by applying the dynamic renormalization group. Assuming an inhomogeneous distribution of soil substrate that is modeled by a source of static noise, we estimate the scaling exponents at first order in an ε-expansion. These exponents also depend on direction. We compare these predictions with empirical measurements made from real landscapes and find good agreement. We propose that our anisotropic theory applies principally to small scales and that a previously proposed isotropic theory applies principally to larger scales. Lastly, by considering our model as a transport equation for a driven diffusive system, we construct scaling arguments for the size distribution of erosion “events” or “avalanches.” We derive a relationship between the exponents characterizing the surface anisotropy and the avalanche size distribution, and indicate how this result may be used to interpret previous findings of power-law size distributions in real submarine avalanches.  相似文献   

12.
Here we introduce a model of parametrically coupled chaotic maps on a one-dimensional lattice. In this model, each element has its internal self-regulatory dynamics, whereby at fixed intervals of time the nonlinearity parameter at each site is adjusted by feedback from its past evolution. Additionally, the maps are coupled sequentially and unidirectionally, to their nearest neighbor, through the difference of their parametric variations. Interestingly we find that this model asymptotically yields clusters of superstable oscillators with different periods. We observe that the sizes of these oscillator clusters have a power-law distribution. Moreover, we find that the transient dynamics gives rise to a 1/f power spectrum. All these characteristics indicate self-organization and emergent scaling behavior in this system. We also interpret the power-law characteristics of the proposed system from an ecological point of view.   相似文献   

13.
《Physics letters. A》1998,242(6):343-348
We introduce a simple model for a set of interacting idealized neurons. The model presents a self-organized state in which avalanches of all sizes are observed and activity is detected in the whole extension of the simulated system without a typical length scale. The basic elements of the model are endowed with the main features of a neuron function. On this basis it is speculated that the collective system that they form, i.e., the brain, could display self-organized criticality in some situations.  相似文献   

14.
An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. We find that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one.  相似文献   

15.
In order to gain insight into the nature of self-organized criticality (SOC), we present a minimal model exhibiting this phenomenon. In this analytically solvable model, the state of the system is fully described by a single-integer variable. The system organizes in its critical state without external tuning. We derive analytically the probability distribution of durations of disturbances propagating through the system. As required by SOC, this distribution is scale invariant and follows a power law over several orders of magnitude. Our solution also reproduces the exponential tail of the distribution due to finite size effects. Moreover, we show that large avalanches are suppressed when stabilizing the system in its critical state. Interestingly, avalanches are affected in a similar way when driving the system away from the critical state. With this model, we have reduced SOC dynamics to a leveling process as described by Ehrenfest's famous flea model.  相似文献   

16.
Bosiljka Tadi?  G.J. Rodgers 《Physica A》2010,389(23):5495-5502
We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.  相似文献   

17.
We devise a two-dimensional model that mimics the recently observed power-law distributions for the amplitudes and durations of the acoustic emission signals observed during martensitic transformation [Vives et al., Phys. Rev. Lett. 72, 1694 (1994)]. We include a threshold mechanism, long-range interaction between the transformed domains, inertial effects, and dissipation arising due to the motion of the interface. The model exhibits thermal hysteresis and, more importantly, it shows that the energy is released in the form of avalanches with power-law distributions for their amplitudes and durations. Computer simulations also reveal morphological features similar to those observed in real systems.  相似文献   

18.
Charge transport in electrorheological fluids is studied experimentally under strongly nonequilibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such a system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.  相似文献   

19.
雪粒径的形状因素对积雪的反射光谱曲线影响较大,如何有效地刻画雪粒径的形状参数成为研究的热点。渐进辐射传输模型被广泛地应用于雪粒径反演,其对雪粒径形状的描述只采用了2个值(3.62对应于片状雪粒径,4.53为球形雪粒径),较难描述积雪的形状参数,同时为了反演积雪的雪粒径,这两个形状参数必须被提前固定,这大大降低了雪粒径的反演精度,为此提出了一种基于光谱库的雪粒径及形状参数反演算法(LUTMA)。首先利用渐进辐射传输模型建立不同粒径,不同形状参数的光谱库,然后采用光谱角指标进行匹配,最终获取积雪的粒径与形状参数。实验表明,基于光谱库的雪粒径及形状参数反演新方法与实测数据较为吻合。  相似文献   

20.
Prabodh Shukla 《Pramana》2008,71(2):319-329
Bootstrap percolation transition may be first order or second order, or it may have a mixed character where a first-order drop in the order parameter is preceded by critical fluctuations. Recent studies have indicated that the mixed transition is characterized by power-law avalanches, while the continuous transition is characterized by truncated avalanches in a related sequential bootstrap process. We explain this behaviour on the basis of an analytical and numerical study of the avalanche distributions on a Bethe lattice.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号