首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This Letter describes an investigation of interfacial melting in ice-bearing granular flows. It is proposed that energy associated with granular collisions causes melting at an ice particle's surface, which can thus occur at temperatures well below freezing. A laboratory experiment has been designed that allows quantification of this process and its effect on the dynamics of a granular shear flow of ice spheres. This experiment employs a rotating drum, half filled with ice particles, situated in a temperature controlled laboratory. Capillary forces between the wetted melted particle surfaces lead to the clumping of particles and enhanced flow speeds, in turn leading to further melting. Dimensional analysis defines a parameter space for further experimentation.  相似文献   

2.
Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried Radar and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.  相似文献   

3.
Bastea S 《Physical review letters》2004,93(19):199603; author reply 199604
  相似文献   

4.
We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.  相似文献   

5.
Scaling laws for large virtual photon mass (q2) in electroproduction and annihilation are studied in the framework of a simple planar dual model. We find, as has recently been conjectured, that the scaling behaviour depends on the number of space-time dimensions spanned by large momenta. In particular, for a certain range of parameters in the model, we find that the annihilation cross section is dominated by the one-dimensional configuration and increases with q2 relative to its canonical behaviour while the electroproduction total cross section is dominated by the two-dimensional configuration and has the canonical Bjorken scaling behavior. In general the scaling laws and therefore the structure of events in the model are distinctively different from the conventional parton model. The problem of consistency of planar dual tree diagrams with unitarity sum rules is discussed.  相似文献   

6.
R Jones 《Pramana》1982,19(3):279-288
Simple theory and basic plasma physics experiments are used to deduce scaling laws for ion source discharges.  相似文献   

7.
8.
One of the most pervasive laws in biology is the allometric scaling, whereby a biological variable Y is related to the mass M of the organism by a power law, Y=Y0Mb, where b is the so-called allometric exponent. The origin of these power laws is still a matter of dispute mainly because biological laws, in general, do not follow from physical ones in a simple manner. In this work, we review the interspecific allometry of metabolic rates, where recent progress in the understanding of the interplay between geometrical, physical and biological constraints has been achieved.

For many years, it was a universal belief that the basal metabolic rate (BMR) of all organisms is described by Kleiber's law (allometric exponent b=3/4). A few years ago, a theoretical basis for this law was proposed, based on a resource distribution network common to all organisms. Nevertheless, the 3/4-law has been questioned recently. First, there is an ongoing debate as to whether the empirical value of b is 3/4 or 2/3, or even nonuniversal. Second, some mathematical and conceptual errors were found these network models, weakening the proposed theoretical arguments. Another pertinent observation is that the maximal aerobically sustained metabolic rate of endotherms scales with an exponent larger than that of BMR. Here we present a critical discussion of the theoretical models proposed to explain the scaling of metabolic rates, and compare the predicted exponents with a review of the experimental literature. Our main conclusion is that although there is not a universal exponent, it should be possible to develop a unified theory for the common origin of the allometric scaling laws of metabolism.  相似文献   


9.
10.
Scaling laws governing implosions of thin shells in converging flows are established by analyzing the implosion trajectories in the (A,M) parametric plane, where A is the in-flight aspect ratio, and M is the implosion Mach number. Three asymptotic branches, corresponding to three implosion phases, are identified for each trajectory in the limit of A,M >1. It is shown that there exists a critical value gamma(cr) = 1+2/nu (nu = 1,2 for, respectively, cylindrical and spherical flows) of the adiabatic index gamma, which separates two qualitatively different patterns of the density buildup in the last phase of implosion. The scaling of the stagnation density rho(s) and pressure P(s) with the peak value M(0) of the Mach number is obtained.  相似文献   

11.
An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. We find that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one.  相似文献   

12.
We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases.  相似文献   

13.
Mechanical behavior of the Si(111)/Si(3)N4(0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1; 1;1) plane of the silicon substrate with a speed of 500 (+/-100) m/s. Time evolution of the dislocation emission and nature of defects is studied.  相似文献   

14.
We study such nonlinear mappingsx n +1=F(x n ;b cr) of an intervalI into itself for which the Feigenbaum scaling laws hold (i.e., for which bcr is an accumulation point of bifurcation points). Letx 0 be a random variable with some absolutely continuous distribution inI. We show in particular that (i) the geometric average distance ofx n from the nearest point of the attractor decreases liken –1.93387; (ii) the geometric average of ¦x n /x 0¦ increases liken 0.60; (iii) the geometric mean distance ¦x n –y n ¦ between the iterates of two close-by pointsx 0,y 0 asymptotically tends towards a value ¦x 0y 0¦0.77. These-and other-properties are also borne out from a simple probabilistic model which depicts the evolution as a random walklike process.  相似文献   

15.
We use an exact recursion procedure to verify analytically, without any intermediary numerical calculation, the validity of the hyperscaling (Josephson) law extended to fractals, the Rushbrooke and Griffiths scaling laws for the Ising ferromagnet with external magnetic field in the whole family of Migdal-Kadanoff-like hierarchical lattices.  相似文献   

16.
We study the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model.The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from one significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning.Through this framework we consider other cases: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. We also look into spin-0 partons and Regge singularities.All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element ?0+; the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large pT hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity that polarized hadron electroproduction has to delicate detail that is otherwise concealed.  相似文献   

17.
The variation in dynamic stiffness due to a geometrical shift of a cylindrical vibration isolator is predicted by a scaling law and compared to the results of a waveguide solution. The simple scaling law fails to model satisfactorily the stiffness variation due to a single length or radius shift, while predicting successfully the results of an isolator shape invariant shift. The small deviations arise from a disregarded material property shift.  相似文献   

18.
An improved formula for anomalous transport caused by the dissipative trapped-ion instability (without shear effect) is derived numerically and by two independent analytical methods. The new shearless result is also used to derive the anomalous diffusion with shear effect by a general method already published.  相似文献   

19.
New scaling laws are presented for hot turbulent jet mixing noise outside the cone of silence. These account for mean flow field effects on sound radiation via an analytical high frequency approximate solution to Lilley's equation. Numerical calculations for sound radiation from sources in a cylindrical shear flow are used to test the validity of the approximation. The proposed scaling laws yield an excellent collapse of jet noise measurements over a wide range of conditions. The resulting information has been incorporated into a jet mixing noise prediction scheme which, with appropriate modifications to the analytical high frequency approximation, can be applied both inside and outside the cone of silence. The prediction scheme for angles inside the cone of silence will be described in a subsequent paper.  相似文献   

20.
We describe the global behavior of the dynamics of a particle bouncing down an inclined staircase. For small inclinations all orbits eventually stop (independent of the initial condition). For large enough inclinations all orbits end up accelerating indefinitely (also independent of the initial conditions). There is an interval of inclinations of positive length between these two. In that interval the behavior of an orbit depends on its initial condition. In addition to stopping and accelerating orbits, there are also orbits with speeds bounded away from both zero and infinity. A second hallmark of the dynamics is that the orbits going at a finite (but non-zero) average speed tend to have close to constant speed. In the setting of this model these phenomena are robust in the sense that they are independent of the ‘ruggedness’ of the staircase and of the coefficients of restitution that govern the energy loss at each bounce.The behavior just described matches up well with physical observations of single particles falling down a rough slope as well as measurements in laboratory controlled avalanches. This (and the robustness of the results) suggests that many-particle systems (avalanches) behave in similar ways as our low-dimensional model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号