首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A metal ion (Cu(2+)) and a complex copper species, copper (II) bis-bipyridine, were used as alternate counterions in an aqueous surfactant solution of sodium dodecylbenzenesulfonate (SDBS) to investigate the dynamics of counterion interactions in an acoustic field. Sonoluminescence spectral studies showed that such counterions were able to replace sodium ions at the interface, even when the interface was rapidly oscillating under the acoustic field. Ultrasound induced nebulisation was then used to probe the interfacial profile of surfactant and bound counterions in a dynamic environment. At low bulk concentrations, the copper (II) bis-bipyridine cation was more effective at enhancing the loading of the dodecylbenzenesulfonate anion on the interface, due to its documented greater binding ability. However, at higher bulk concentrations, the movement of this cation is limited by its larger size and the smaller Cu(2+) cation is more effective in enhancing the loading of the dodecylbenzenesulfonate anion. The results show that under dynamic conditions, the surface concentrations are governed by mass transfer kinetics rather than equilibrium thermodynamics.  相似文献   

2.
The influence of the cysteamine surfactant concentration on the stability of CdSe/ZnS nanoparticles (NPs) solubilized by this compound at the phase interface between two immiscible liquids is considered. The steady-state and time-resolved fluorescence spectroscopy data show that the fluorescence quantum yield of cysteamine-coated NPs and their stability to aggregation in a potassium phosphate buffer are determined by the balance between the concentrations of surfactant in the aqueous phase and hydrophobic NPs in the nonpolar phase (chloroform, toluene, etc.). It is found that the brightest and most stable hydrophilic NPs can be obtained by completely coating them by cysteamine molecules without a surfactant deficit or excess in the reaction at the phase interface.  相似文献   

3.
The self-assembly of amphiphilic molecules into supramolecular aggregates involves a number of complex phenomena and forces. Recent developments of highly sensitive, densimetric and acoustic methods on small volume samples have provided novel sensitive probes to explore the physical properties of these complex fluids. We have investigated, by high precision densimetry and ultrasound velocimetry, reverse micelles of [sodium bis(2-ethylhexyl)sulfosuccinate] in oil (isooctane and decane), at increasing water concentration and at variable micellar volume fractions. The size of these spherical micelles has been determined by small angle x-ray scattering. Using these results, in the framework of the effective medium theory, we have developed a simple model of micellar compressibility, allowing the calculation of physical parameters (aggregation number, volume, and compressibility) of the surfactant monomolecular film as well as that of the micellar waters. In particular, we show that the central aqueous core designated as "free" water, located at a distance from the oil-water interacting interface, is twice as compressible as "bulk" water. One notable feature of this work is the influence of the nature of the oil on the above parameters.  相似文献   

4.
High resolution core level photoemission spectroscopy, photoelectron diffraction, and x-ray magnetic circular dicroism (XMCD) have been used to characterize the structural and magnetic properties of bcc-cobalt films grown on GaAs(110) substrates by using Sb as a surfactant. We have unambiguously disentangled the surfactant role played by the Sb which improves the crystallinity and reduces the lattice distortion of the metallic films as well as changes the interdiffusion process at the interface compared to the Co/GaAs(110) system. As a consequence of these combined effects, an improvement on the magnetic response of the grown Co thin films has been observed by XMCD measurements.  相似文献   

5.
In this paper, a Lagrangian particle method is proposed for the simulation of multiphase flows with surfactant. The model is based on the multiphase smoothed particle hydrodynamics (SPH) framework of Hu and Adams (2006) [1]. Surface-active agents (surfactants) are incorporated into our method by a scalar quantity describing the local concentration of molecules in the bulk phase and on the interface. The surfactant dynamics are written in conservative form, thus global mass of surfactant is conserved exactly. The transport model of the surfactant accounts for advection and diffusion. Within our method, we can simulate insoluble surfactant on an arbitrary interface geometry as well as interfacial transport such as adsorption or desorption. The flow-field dynamics and the surfactant dynamics are coupled through a constitutive equation, which relates the local surfactant concentration to the local surface-tension coefficient. Hence, the surface-tension model includes capillary and Marangoni-forces. The present numerical method is validated by comparison with analytic solutions for diffusion and for surfactant dynamics. More complex simulations of an oscillating bubble, the bubble deformation in a shear flow, and of a Marangoni-force driven bubble show the capabilities of our method to simulate interfacial flows with surfactants.  相似文献   

6.
We present an ellipsometric study of the interface between a smectic liquid crystal and water in the presence of a nonionic surfactant. The surfactant concentration serves as a handle to tune the surface field. For sufficiently large surfactant concentrations, a smectic phase is present at the interface in the temperature range above the smectic-A-isotropic bulk transition; when the bulk transition is approached, the thickness of this surface phase grows via a series of layer-by-layer transitions at which single smectic layers are formed. At lower surfactant concentrations, transitions appear at which the thickness of the surface phase jumps by multiple smectic layers, thereby implying the existence of triple points at which surface phases with different smectic layer numbers coexist. This is the first experimental demonstration of such surface triple points which are predicted by theoretical models.  相似文献   

7.
Direct in situ x-ray surface scattering studies of growth at a solid-liquid interface are demonstrated using the homoepitaxial electrodeposition on Au(100) as an example. With decreasing potential transitions from step-flow to layer-by-layer growth, manifested by layering oscillations in the x-ray intensity, then to multilayer growth, and finally back to layer-by-layer growth were observed. This complex growth behavior can be explained by the effect of anion coadsorbates and the potential-dependent Au surface reconstruction on the Au surface mobility.  相似文献   

8.
Spectral and surface tension behavior of aqueous neutral red in the presence of sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfonate (SDSN) have been studied to understand the nature of the interactions in their submicellar concentration ranges. The variations in spectra and surface tension with variation in the concentrations of the surfactants suggest the formation of a 1:1 close-packed dye-surfactant ion pair, HNR+S between the acid form, HNR+ of the dye and the surfactant anion at very low concentrations of the surfactant below critical micelle concentration (cmc) of the pure surfactant. The dye-surfactant ion pair behaves like a nonionic surfactant having higher efficiency and lower cmc than that of the corresponding pure anionic surfactant. The ion pairs are adsorbed on the air/water interface at very low concentrations of the surfactant. As the concentration of the surfactant increases and the ion pairs form micelles of their own, the dye in the ion pair is protonated to form H2NR2+S. As the cmc of the pure surfactant is approached, the protonation equilibrium gradually reverses and pure surfactant ions gradually replace the ion pairs at the interface. Finally, a homogeneous monolayer of pure surfactant anions exists at the air/water interface and the dye remain solubilized in pure micelles above the cmc of the pure surfactant. The equilibrium constants, Kc for the close-packed protonated dye-surfactant ion pair (PDSIP) formation have been determined at varying pH. The submicellar interaction has been found to be stronger with SDS than SDBS. The plots of logarithm of Kc vs. pH have been found to be quite linear which consolidates the assumption of formation of the species, H2NR2+S. The interaction is driven by enthalpy as well as entropy.  相似文献   

9.
The adsorption of (maghemite) nanoparticles at the aqueous solution/gas interface was investigated by x-ray reflectivity. Two different concentrations (0.07 g/L and 0.7 g/L) were probed. The x-ray reflectivities indicate the adsorption of nanoparticles at the liquid surface for the highly concentrated solution, while no nanoparticle adsorption could be detected at the surface of the low concentrated solution within several hours. The vertical electron density profile of the high concentration solution/gas interface indicates the formation of a low ordered monolayer of nanoparticles occupying only 6% of the interfacial region.  相似文献   

10.
Grazing incidence x-ray irradiation of a Langmuir monolayer deposited at the interface between an aqueous silver salt solution and the air leads to the formation of a metallic silver layer of thickness about 4.5 nm, in agreement to the x-ray penetration depth at the air – water interface. Moreover using the scattering and fluorescence induced by the x-ray, we show that it is possible to follow the kinetics of formation of the layer. It appear that the silver layer is formed in two steps: first, the formation of small oriented cristallites, and second, the coalescence of the cristallites forming large plates.  相似文献   

11.
We report the origin of the effect of nanoscale confinement on the local viscosity of entangled polystyrene (PS) films at temperatures far above the glass transition temperature. By using marker x-ray photon correlation spectroscopy with gold nanoparticles embedded in the PS films prepared on solid substrates, we have determined the local viscosity as a function of the distance from the polymer-substrate interface. The results show the impact of a very thin adsorbed layer (~7 nm in thickness) even without specific interactions of the polymer with the substrate, overcoming the effect of a surface mobile layer at the air-polymer interface and thereby resulting in a significant increase in the local viscosity as approaching the substrate interface.  相似文献   

12.
What role does water play in the self-assembly of soft materials? To understand the correlation between the hydration state and the various self-assembled structures of a nonionic surfactant, terahertz time-domain spectroscopy has been performed for a C(12)E(5) solution with complementary use of small-angle x-ray scattering. Precise observations of the hydration state show clearly that transitions of the hydration state are accompanied by structural phase transitions of the surfactant from hexagonal to micelle to lamellae. These transitions of hydration state suggest that water is not a homogeneous solvent, and the interaction between water and the soft material is important for self-assembly.  相似文献   

13.
An experimental investigation is presented of chemically driven dynamic instability of an oil-water interface in a cylindrical and annular glass container. The immiscible liquids are water containing a surfactant (TSAC) and nitrobenzene containing iodine. The reaction at the interface leads to complex deformation patterns including rotating solitary waves, multiple wave trains, periodic and nonperiodic oscillations, source-to-sink propagation, and intermittent behavior. A phase diagram is established for the two solute concentrations ranging from 10-4 to 10-1 M. It shows five distinct regions of different dynamic regimes, determined by interaction of at least three mechanisms: dynamic wetting of the container wall, capillary effect, and Marangoni instability of the liquid-liquid interface. The influences of aspect ratio, concentration product, and temperature are investigated and local time traces are derived from electropotential differences. Their spectral analysis reveals details of periodic or irregular motion. Transitions between the dynamic modes of the system during its temporal evolution are recorded. Quantitatively determined profiles of regular waves are analyzed by exponential functions and a simple model for this is proposed.  相似文献   

14.
We use SrTiO?/Si as a model system to elucidate the effect of the interface on ferroelectric behavior in epitaxial oxide films on silicon. Using both first-principles computations and synchrotron x-ray diffraction measurements, we show that structurally imposed boundary conditions at the interface stabilize a fixed (pinned) polarization in the film but inhibit ferroelectric switching. We demonstrate that the interface chemistry responsible for these phenomena is general to epitaxial silicon-oxide interfaces, impacting on the design of silicon-based functional oxide devices.  相似文献   

15.
The paper investigates theoretically the optimization of the doped ablator layers for the plastic ignition capsule. The high-resolved one-dimensional implosion simulations show that the inner pure CH layer of the Si-doped design is excessively preheated by the hard x-ray, leading to the unstable ablator-fuel interface compared to the Ge-doped capsule. This is because that the Si K-shell absorption edge (1.8 keV) is higher than the Ge L-edge (1.3 keV), and Si dopant makes more hard x-ray penetrate through the doped ablator layers to preheat the inner pure CH layer. So an optimization of the doped ablator layers (called "Si/Ge capsule") is performed: an Si-doped CH layer is placed next to the outer pure CH layer to keep the high implosion velocity; next to the Si-doped layer is a thin Ge-doped layer, in order to absorb the hard x-ray and protect the inner undoped CH-layer from excessively preheating. The simulations show that the Si/Ge capsule can effectively improve hydrodynamic stability at the ablator-fuel interface while keeping the high implosion velocity.  相似文献   

16.
The interface magnetocrystalline anisotropy energy (MAE) in Fe/CeH(2) multilayers has been site and element-specifically isolated by combining soft x-ray resonant magnetic scattering (SXRMS) with soft x-ray standing waves. Using the different temperature evolutions of the Fe and Ce SXRMS contributions, following an in-plane to out-of-plane spin reorientation, the interface Fe 3d MAE and Ce 4f single-ion anisotropy have been separated. The results demonstrate that the transition metal interface MAE dominates the spin reorientation while the rare-earth contribution becomes significant only at much lower temperatures.  相似文献   

17.
In this study thin Co films were grown on Si (100): (1) with one monolayer of Sb as surfactant and (2) without any surfactant. The Co film, its interface with the Si substrate and the behavior of the Sb surfactant layer were investigated during the growth by high-resolution Rutherford backscattering. By the use of Sb, the evaporated cobalt grows in a layer-by-layer mode and the mixing of Co and Si at the interface is strongly reduced. During the evaporation of Co, Sb floats on the surface for all Co coverages with some incorporation in the grown Co film only for higher coverages. The improvement of the interface quality is also reflected in the magnetic properties of the Co film.  相似文献   

18.
Creep experiments on polycrystalline surfactant hexagonal columnar phases show a power law regime, followed by a drastic fluidization before reaching a final stationary flow. The scaling of the fluidization time with the shear modulus of the sample and stress applied suggests that the onset of flow involves a bulk reorganization of the material. This is confirmed by x-ray scattering under stress coupled to in situ rheology experiments, which show a collective reorientation of all crystallites at the onset of flow. The analogy with the fracture of heterogeneous materials is discussed.  相似文献   

19.
A small amount of alumina nanoparticles in polymethylmethacrylate causes a sharp depression of the glass transition temperature (Tg) accompanied by a toughening of the composite. We investigated this phenomenon using multispeckle x-ray photon correlation spectroscopy. Measurements reveal a dynamic structure factor that has the form exp[-(t/taua)beta], with beta greater than 1. We show for the first time that beta(T) tracks the internal stress at the polymer-particle interface. The internal stress, which we propose arises due to the entropic penalty that the polymer faces in the presence of the nanoparticles, engenders temporally heterogeneous dynamics. In the jammed glassy state, we show that the dominant fast relaxation mode--taumax--aided by a weak dewetting interface relieves the stress and follows the variations in Tg.  相似文献   

20.
We report the first grazing incidence x-ray diffraction measurements of a single phospholipid bilayer at the solid-liquid interface. Our grazing incidence x-ray diffraction and reflectivity measurements reveal that the lateral ordering in a supported DPPE (1, 2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine) bilayer is significantly less than that of an equivalent monolayer at the air-liquid interface. Our findings also indicate that the leaflets of the bilayer are uncoupled in contrast to the scattering from free standing phosphatidylcholine bilayers. The methodology presented can be readily implemented to study more complicated biomembranes and their interaction with proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号