首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study control of wave packets with a finite accuracy, approaching it as quantum information processing. For a given control resolution, we define the analogs of several quantum bits within the shape of a single wave packet. These bits are based on wave packet symmetries. Analogs of one- and two-bit gates can be implemented using only free wave packet evolution and coordinate-dependent ac Stark shifts applied at the moments of fractional revivals. As in quantum computation, the gates form a logarithmically small set of basis operations which can be used to approximate any unitary transformation desired for quantum control of the wave packet dynamics. Numerical examples show the application of this approach to control vibrational wave packet revivals.  相似文献   

2.
矩形弹子球中的量子波包分析(英文)   总被引:1,自引:0,他引:1  
利用波包分析量子力学体系的动力学行为在研究经典和量子的对应关系方面越来越成为一个非常重要的方法.利用高斯波包分析方法,我们计算了矩形弹子球体系的自关联函数,自关联函数的峰和经典周期轨道的周期符合的很好,这表明经典周期轨道的周期可以通过含时的量子波包方法产生.我们还讨论了矩形弹子球的波包回归和波包的部分回归,计算结果表明在每一个回归时间,波包出现精确的回归.对于动量为零的波包,初始位置在弹子球内部的特殊对称点处,出现一些时间比较短的附加的回归.  相似文献   

3.
利用WKB近似和自关联函数方法,我们研究了一般幂指数中心势V(r)=γrk (-20)作用下波包的回归和部分回归.对于排斥势(γ>0, k>0), 势是一长程势,量子化能级结构中只有一个量子数,波包的回归结构和一维幂指数势的情况类似.这一结果表明能级结构相同的体系具有相同的波包回归结构.对于吸引势,能级结构中有两个量子数, 当 k取不同的值时,波包的回归结构不同.对于库仑吸引势,波包回归和部分回归出现;但是对于其它的k值, 经过一段时间后,波包出现坍塌.本文的研究对于探讨里德堡原子和分子中电子运动的经典极限提供了一个新的方法.  相似文献   

4.
利用WKB近似和自关联函数方法,我们研究了一般幂指数中心势V(r)=rk (-20)作用下波包的回归和部分回归。对于排斥势(>0, k>0), 势是一长程势,量子化能级结构中只有一个量子数,波包的回归结构和一维幂指数势的情况类似。这一结果表明能级结构相同的体系具有相同的波包回归结构。 对于吸引势,能级结构中有两个量子数, 当 k取不同的值时,波包的回归结构不同。对于库仑吸引势,波包回归和部分回归出现; 但是对于其它的k值, 经过一段时间后,波包出现坍塌。本文的研究对于探讨里德堡原子和分子中电子运动的经典极限提供了一个新的方法。  相似文献   

5.
We show (i) how the evolution of a wave packet created from an initial thermal ensemble can be controlled by manipulating interferences during the wave packet's fractional revivals and (ii) how the wave-packet evolution can be mapped onto the dynamics of a few-state system, where the number of states is determined by the amount of information one wants to track about the wave packet in the phase space. We illustrate our approach by (i) switching off and on field-free molecular axis alignment induced by a strong laser pulse and (ii) converting alignment into field-free orientation, starting with rotationally cold or hot systems.  相似文献   

6.
An exact analytic solution was obtained for the correlation function of the motion of a phase-modulated Gauss wave packet in an anharmonic potential. The solution is expressed through the theta-function with the parameters depending on both the potential and phase modulation of the initial wave packet. Changes in both linear and quadratic chirps result in an invariant correlation function time shift in a weakly anharmonic potential with the conservation of all the total and fractional revivals. At a strong potential anharmonicity, translational invariance with respect to a quadratic chirp is preserved in certain instances, whereas the dynamics of packets experiences qualitative changes depending on linear phase modulation. This approach can be used to qualitatively analyze intramolecular dynamics if the potential energy surface is not known exactly, which is especially useful for quantum control of large molecules, in particular, photochromes.  相似文献   

7.
We explore the quantum dynamical behavior of the Morse oscillator in the phase space using the Wigner function. For an initial wave packet excited with Gaussian probability distribution, we calculate the associated Wigner function and compute its time evolution. By calculating the marginal probabilities, we study the formation of quantum carpets both in the position space and in the momentum space. In addition, in view of these probabilities, we present the time evolution of the position and momentum expectation values. The structure of quantum carpets and the time-evolved expectation values mimic the emergence of quantum revivals and fractional revivals.  相似文献   

8.
We show that high harmonic generation is the most sensitive probe of rotational wave packet revivals, revealing very high-order rotational revivals for the first time using any probe. By fitting high-quality experimental data to an exact theory of high harmonic generation from aligned molecules, we can extract the underlying electronic dipole elements for high harmonic emission and uncover that the electron gains angular momentum from the photon field.  相似文献   

9.
Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.  相似文献   

10.
For the first time, the femtosecond real-time vibrational dynamics of the rare 41,41K2 isotope, excited to the electronic state, could be selectively studied by means of time-resolved three photon ionization. A vibrational period of fs is determined. Superimposed, a beat structure with a period of 20 ps is observed. A detailed Fourier analysis reveals a strong band of three lines centered around 65.5 cm-1. A significant perturbation of the wave packet caused by spin-orbit coupling of the A and the crossing state is found. This perturbation is the reason for the fast dephasing of the initially generated wave packet within about 10 ps. The spectrogram of the real-time data shows total revivals of the wave packet at 20 ps and 40 ps. Fractional revivals are found for times around 10 ps and 30 ps. Due to high intensity effects a remarkable slightly broadened line at 90 cm-1 appears and can be assigned to the wave packet propagation generated in the dimer's ground state by impulsive stimulated Raman scattering. Revivals of this ground state wave packet are found at 17ps and 34ps. A comparison with other isotopes of K2 is given. Received: 9 February 1998 / Revised: 15 May 1998 / Accepted: 2 June 1998  相似文献   

11.
It is shown that sum of information entropies in position and momentum space, quantifies the temporal information in wave packet dynamics of a dynamical system. Quantum fractional revivals are investigated on these bases in periodically driven Fermi-Ulam accelerator. It is observed that the entropic measure provides deeper insight of the wave packet dynamics for the long time evolution as compared with conventional autocorrelation function. It is shown that these revival times are not symmetric in driven situations and may lead to a random behavior.  相似文献   

12.
《Physics letters. A》2020,384(12):126351
A theoretical scheme to realize quantum state transfer and state storage in a uniformly coupled tight-binding chain is introduced in this paper. Two controllable gate voltages acting as local barriers are applied onto specific sites of the system, which separate the chain into three regions. By setting two gate voltages being equal, we show that an initially localized quantum wave packet undergoes perfect periodic revivals, allowing for perfect quantum state transfer between two nonadjacent spatial regions of the system. We also show that the wave packet can be trapped in its initial region by setting two gate voltages being unequal, which relates to the problem of storing quantum information. Moreover an efficient time-dependent quantum state transfer protocol is presented by smoothly varying the two gate voltages. Significantly, in our setup, the transferred state can be trapped, with a high fidelity of storage, at the end of the transfer protocol.  相似文献   

13.
Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by Trev=9μa2/4?π where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60°-60°-60°) triangle, such as the half equilateral (30°-60°-90°) triangle and other “foldings,” which have related energy spectra and revival structures.  相似文献   

14.
We have studied the A(1g) coherent phonons in bismuth generated by high fluence ultrashort laser pulses. We observed that the nonlinear regime, where the phonons' oscillation parameters depend on fluence, consists of subregimes with distinct dynamics. Just after entering the nonlinear regime, the phonons become chirped. Increasing the fluence further leads to the emergence of a collapse and revival, which next turns into multiple collapses and revivals. This is explained by the dynamics of a wave packet in an anharmonic potential, where the packet periodically breaks up and reconstitutes in its original form, giving convincing evidence that the phonons are in a quantum state, with no classical analog.  相似文献   

15.
Wave packets in a system governed by a Hamiltonian with a generic nonlinear spectrum typically exhibit both full and fractional revivals. It is shown that, by varying the parameters in the Hamiltonian cyclically with a period T and thus inducing suitable geometric phases in the states, fractional revivals can be eliminated at the relevant times T, 2T,... . Further, with the introduction of this time step T, the occurrence of near full revivals can be mapped onto that of Poincaré recurrences in an irrational rotation map of the circle. The distinctive recurrence statistics of the latter can thus serve as a clear signature of the dynamics of wave packet revivals.  相似文献   

16.
We report the experimental observation of revival structures in the alignment of a ground-state rotational wave packet following nonresonant excitation of I2 molecules by an intense picosecond laser pulse. The revivals appear at characteristic time delays following the excitation by the pump laser pulse, and show a significant narrowing of the angular distribution during a few picoseconds. The interaction with the pump laser also leads to a steady-state alignment of the molecule, due to rotational pumping.  相似文献   

17.
In this paper, we find an analytic solution of the master equation of a non-resonant two-photon JaynesCummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.  相似文献   

18.
We propose and experimentally demonstrate a method to prepare a nonspreading atomic wave packet. Our technique relies on a spatially modulated absorption constantly chiseling away from an initially broad de Broglie wave. The resulting contraction is balanced by dispersion due to Heisenberg's uncertainty principle. This quantum evolution results in the formation of a nonspreading wave packet of Gaussian form with a spatially quadratic phase. Experimentally, we confirm these predictions by observing the evolution of the momentum distribution. Moreover, by employing interferometric techniques, we measure the predicted quadratic phase across the wave packet. Nonspreading wave packets of this kind also exist in two space dimensions and we can control their amplitude and phase using optical elements.  相似文献   

19.
We use an interferometic scheme to extract the phase distribution of the electron wave packet from above-threshold ionization in elliptically polarized laser fields. In this scheme, an electron wave packet released from a circularly polarized laser pulse acts as a reference wave and interferes with the electron wave packet ionized by a time-delayed counter-rotating elliptically polarized laser field. The generated vortex-shaped interference pattern in the photoelectron momentum distribution enables us to extract the phase distribution of the electron wave packet in the elliptically polarized laser pulse with high precision. By artificially screening the ionic potential at different ranges when solving the time-dependent Schördinger equation, we find that the angle-dependent phase distribution of the electron wave packet in the elliptically polarized laser field shows an obvious angular shift as compared to the strong-field approximation, whose value is the same as the attoclock shift. We also show that the amplitude of the angle-dependent phase distribution is sensitive to the ellipticity of the laser pulse, providing an alternative way to precisely calibrate the laser ellipticity in the attoclock measurement.  相似文献   

20.
Li M  Pan H  Tong Y  Chen C  Shi Y  Wu J  Zeng H 《Optics letters》2011,36(18):3633-3635
We experimentally demonstrate ultrafast polarization switching of terahertz (THz) radiation generated by dual-color driving pulses composed of orthogonally polarized fundamental and second-harmonic waves, which can be controlled by field-free molecular alignment in air by modulating the relative phase between the two field components as a transient dynamic wave plate. By fine-tuning the time delay to properly match the molecular alignment revivals, a significant polarization modulation of the THz radiation is observed and both linearly and elliptically polarized THz radiations can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号