共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary: This paper presents a method to model the mechanical behavior of polymers over a wide time- and load-range by means of finite element analyses. The method includes a material model as well as the determination of material parameters to calibrate the material model. As a special feature of this method the model is calibrated only by using creep data that are commonly available in material data bases. So the procedure improves the simulation of the long time behavior of plastic-components without an additional experimental effort. In combination with time-temperature-superposition principle, the temperature dependency of the long term behavior is represented, too. The simulation results are validated by creep experiments on an example part. 相似文献
2.
William D. Armstrong 《Journal of Polymer Science.Polymer Physics》1998,36(13):2301-2309
The present work reports a discrete, stress-dependent dynamic compliance spectra method which may be used to predict the mechanical response of nonlinear viscoelastic polymers during strain-defined processes. The method is based on the observation that the real and complex parts of the discrete dynamic compliance frequency components obtained from creep measurements are smooth, easily fit functions of stress. Comparisons between experimental measurements and model calculations show that the model exhibits excellent quantitative agreement with the basis creep measurements at all experimental stress levels. The model exhibits good quantitative agreement with stress relaxation measurements at moderate levels of applied strain. However, the model underestimates the experimental stress relaxation at an applied strain of 3.26%. The stress relaxation error appears to be a real material effect resulting from the different strain character of creep and stress relaxation tests. The model provides a good quantitative agreement with experimental constant strain rate measurements up to approximately 4% strain, after which the model underestimates the experimental flow stress. This effect is explained by the time dependence of the stress-activated configurational changes necessary for large strains in glassy polymers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2301–2309, 1998 相似文献
3.
Qiang Zheng Wanjie Wang Qiuming Yu Jei Yu Li He Hong Tan 《Journal of Polymer Science.Polymer Physics》2006,44(9):1309-1319
Studies on the nonlinear viscoelastic behavior of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) were carried out. The nonlinear viscoelastic region was determined through dynamic strain sweep test, and the critical shear strain (γc) of transition from linear viscoelastic region to nonlinear viscoealstic region was obtained. The relaxation time and modulus corresponding to the characteristic relaxation modes were also acquired through simulating the linear relaxation modulus curves using Maxwell model, and the damping functions were evaluated. Meanwhile, it is found that the nonlinear relaxation modulus obtained at relatively low shear strains follows the strain–time separation principle, and the damping function of SEEPS can be fit to Laun double exponential model well. Moreover, the successive start‐up of shear behavior, the steady shear behavior, and the relaxation behavior after steady shear were investigated, respectively. The results showed that Wagner model, derived from the K‐BKZ (Kearsley‐Bernstein, Kearsley, Zapas) constitutive equation, could simulate the experiment data well, and in addition, experiment data under the lower shear rates are almost identical with the fitting data, but there exists some deviation for data under considerable high shear rates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1309–1319, 2006 相似文献
4.
K. L. Ngai Daniele Prevosto Luigi Grassia 《Journal of Polymer Science.Polymer Physics》2013,51(3):214-224
The nanobubble inflation method is the only experimental technique that can measure the viscoelastic creep compliance of unsupported ultrathin films of polymers over the glass–rubber transition zone as well as the dependence of the glass transition temperature (Tg) on film thickness. Sizeable reduction of Tg was observed in polystyrene (PS) and bisphenol A polycarbonate by the shift of the creep compliance to shorter times. The dependence of Tg on film thickness is consistent with the published data of free‐standing PS ultrathin films. However, accompanying the shift of the compliance to shorter times, a decrease in the rubbery plateau compliance is observed. The decrease becomes more dramatic in thinner films and at lower temperatures. This anomalous viscoelastic behavior was also observed in poly(vinyl acetate) and poly (n‐butyl methacrylate), but with large variation in the change of either the Tg or the plateau compliance. By now, well established in bulk polymers is the presence of three different viscoelastic mechanisms in the glass–rubber transition zone, namely, the Rouse modes, the sub‐Rouse modes, and the segmental α‐relaxation. Based on the thermorheological complexity of the three mechanisms, the viscoelastic anomaly observed in ultrathin polymer films and its dependence on chemical structure are explained in the framework of the Coupling Model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
5.
The problem of hydrate blockage of pipelines in offshore production is becoming ever-increasing severe because oil fields in ever-increasing unusual environments have been brought in production.HCFC-141b and THF were selected as the substitutes to study the flow assurance of the hydrates in pipelines.There are critical hydrate volume concentrations for these two slurries.Hydrate slurries behave like Bingham fluids and have high agglomerating tendency when the hydrate volume concentrations are larger than the critical ones.Based on theological behaviors of these two hydrates,a non-dimensional parameter is proposed through studying the driving forces of agglomeration among hydrate particles,which shows the agglomerating probability of hydrate particles in pipeline and can be used to judge the safety of the pipeline.Moreover,a safe model to judge the safely flow hydrate slurries was presented and verified with the experimental data,which demonstrates that the model is effective to judge whether the pipeline can be run safely or not. 相似文献
6.
Nanoindentation is an increasingly used method of extracting surface mechanical properties of viscoelastic materials, especially polymers. Recently, Hutcheson and McKenna used a viscoelastic contact mechanics model to analyze the contact problem between a nanosphere and polystyrene surface. In nanoindentation experiments, the ramp loading test is a similar problem to the particle embedment experiment except that the indentation load function differs. The motivation in this work is to expand the Hutcheson and McKenna analysis to the nanoindentation problem. In particular, we illustrate the limitations of analyzing only a single load‐indentation curve, which does not provide enough information to determine the full range of the viscoelastic response of a polymer, and we show that performing a test sequence that includes multiple loading rates or indentation rates spanning two or more orders of magnitude greatly improves the extracted viscoelastic properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 633–639 相似文献
7.
Derrick Dean Mark Husband Mark Trimmer 《Journal of Polymer Science.Polymer Physics》1998,36(16):2971-2979
The linear viscoelastic behavior of a poly(paraphenylene) with a benzoyl substituent has been examined using tensile, dynamic mechanical, and creep experiments. This amorphous polymer was shown to have a tensile modulus of 1–1.5 Msi, nearly twice that of most common engineering thermoplastics. The relaxation behavior, which is similar to that of common thermoplastics, can be described by the WLF equation. Outstanding creep resistance was observed at low temperatures, with rubbery-like behavior being exhibited as the temperature approached Tg. Physical aging was shown to interact with long-term creep, rendering time–temperature superposition invalid for predicting the long-term properties. The effect of physical aging on the creep behavior was characterized by the shift rate μ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 70: 2971–2979, 1998 相似文献
8.
Christopher G. Robertson Jeremy E. Monat Garth L. Wilkes 《Journal of Polymer Science.Polymer Physics》1999,37(15):1931-1946
The physical aging behavior of an isotropic amorphous polyimide possessing a glass transition temperature of approximately 239°C was investigated for aging temperatures ranging from 174 to 224°C. Enthalpy recovery was evaluated as a function of aging time following sub‐Tg annealing in order to assess enthalpy relaxation rates, and time‐aging time superposition was employed in order to quantify mechanical aging rates from creep compliance measurements. With the exception of aging rates obtained for aging temperatures close to Tg, the enthalpy relaxation rates exhibited a significant decline with decreasing aging temperature while the creep compliance aging rates remained relatively unchanged with respect to aging temperature. Evidence suggests distinctly different relaxation time responses for enthalpy relaxation and mechanical creep changes during aging. The frequency dependence of dynamic mechanical response was probed as a function of time during isothermal aging, and failure of time‐aging time superposition was evident from the resulting data. Compared to the creep compliance testing, the dynamic mechanical analysis probed the shorter time portion of the relaxation response which involved the additional contribution of a secondary relaxation, thus leading to failure of superposition. Room temperature stress‐strain behavior was also monitored after aging at 204°C, with the result that no discernible embrittlement due to physical aging was detected despite aging‐induced increases in yield stress and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1931–1946, 1999 相似文献
9.
聚合物多元醇分散体的流变特性 总被引:1,自引:0,他引:1
聚合物多元醇分散体(以下简称分散体)是接枝聚醚多元醇、聚醚多元醇和乙烯基单体聚合物的混合物,直接用于制备高回弹、高负载和阻燃的软质和半软质聚氨酯泡沫体,是新一代聚醚多元醇产品[1].分散体用于聚氨酯工业中各种产品的生产,除要求有良好的稳定性外,其最为重要的指标是粘度应小于3000mPa·s和乙烯基单体聚合物的含量(固含量)应大于40%.但分散体的粘度,随固含量的增加呈指数性增加[2].近年来,已有既具高固含量和良好稳定性,又有较低粘度的分散体的研究报道[3].本文在不同的反应条件下,合成了分散体,测定了其流变特性和体系中微粒的大小… 相似文献
10.
ZUO Min ZHENG Qiang Key Laboratory of Macromolecular Synthesis Functionalization Ministry of Education Department of Polymer Science Engineering Zhejiang University Hangzhou China Department of Chemical Engineering Hong Kong University of Science Technology Clear Bay Kowloon Hong Kong 《中国科学B辑(英文版)》2008,51(1):1-12
Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero- geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of poly- olefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers’ op- timizing the morphology/structure and ultimate mechanical properties of polymer materials. 相似文献
11.
Mahsa Baghban Salehi Ebrahim Vasheghani‐Farahani Mohsen Vafaie Sefti Asefe Mousavi Moghadam Hasan Naderi 《先进技术聚合物》2014,25(4):396-405
In this research, an optimal hydrogel, based on sulfonated polyacrylamide, was synthesized by statistical design of experiments using central composite method. This new hydrogel composed of sulfonated polyacrylamide (AN125VLM) and chromium triacetate as copolymer and crosslinker, respectively. The bottle and rheological tests were conducted to investigate the gelation time, thermal stability, gel strength and also ultimate elastic modulus, complex modulus, and yield stress. It was found that copolymer concentration had the main effect in both rheological and transport properties of hydrogels. The sample prepared at optimum condition, i.e. copolymer concentration of 26,340 ppm and crosslinker/copolymer ratio of 0.12, had an ultimate elastic modulus of 29.9 kPa, yield stress of 800 Pa, and complex modulus of 32 kPa. A coreflooding test through fracture was carried out to examine the optimum gel performance in a porous media. A value of 483 for the residual resistance factor ratio of water to oil confirmed the high ability of the hydrogel in reducing the relative permeability of water to oil in fractured media. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
几种生物柴油的制备及其流变学性能的比较 总被引:2,自引:5,他引:2
以六种常见的动植物油脂为原料,制备生物柴油并测定其脂肪酸甲酯分布、凝点和冷滤点值。以动态流变仪为主要研究手段,研究了六种生物柴油的流体性能及相关影响因素。结果表明,生物柴油的凝点和冷滤点值受其脂肪酸甲酯分布的影响,饱和脂肪酸甲酯含量高的生物柴油,其凝点和冷滤点值也相应较高。流变学测定实验表明,六种生物柴油样品的流体性能受温度和剪切速率的影响。在较低的剪切速率范围内表现为典型的非牛顿流体行为,而在较高的剪切速率下则表现为牛顿流体行为。当流体温度高于生物柴油的相变温度时,六种生物柴油的表观黏度无明显差别,说明在该温度条件下生物柴油的脂肪酸甲酯分布对其流体黏度值影响不大;当流体温度接近其相变温度时,生物柴油流体黏度出现突跃式升高且其突变温度高于其冷滤点温度。 相似文献
13.
Xiaoming Chen Guoqing Qian Max A. Molleo Brian C. Benicewicz Harry J. Ploehn 《Journal of Polymer Science.Polymer Physics》2015,53(21):1527-1538
This work investigates the effects of polymer solids content and macromolecular structure on the high temperature creep behavior of polybenzimidazole (PBI) gel membranes imbibed with phosphoric acid (PA) after preparation via a polyphosphoric acid (PPA) mediated sol‐gel process Low‐solids, highly acid‐doped PBI membranes demonstrate outstanding fuel cell performance under anhydrous, ambient pressure, and high temperature (120–200 °C) operating conditions. However, PBI membranes are susceptible to creep under compressive loads at elevated temperatures, so their long‐term mechanical durability is a major concern. Here, we report results for the creep behavior of PBI membranes subject to compression at 180 °C. For para‐ and meta‐PBI homopolymers, increasing polymer solids content results in lower creep compliance and higher extensional viscosity, which may be rationalized by increasing chain density in the sol‐gel network. Comparing various homo‐ and copolymers at similar solids loading, differences in creep behavior may be rationalized in terms of chain–chain and chain‐solvent interactions that control macromolecular solubility and stiffness in the PA solvent. The results demonstrate the feasibility of improving the mechanical properties of PA‐doped PBI membranes by control of polymer solids content and rational design of PBI macromolecular structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1527–1538 相似文献
14.
A rheological constitutive equation for complex polymeric materials is derived starting from a special formulation of the relaxation function. This relaxation function contains six parameters and is divided into three regions: the plateau region, an intermediate power-law region and the terminal region of rapid stress decay. Material functions like the complex modulusG
* and the logarithmic density function of the relaxation time spectrum H and of the retardation time spectrum L respectively are derived. Material parameters like the zero shear viscosity
0 and the equilibrium shear complianceJ
e are also calculated. The comparison of the measured dynamic moduli of H-shaped polystyrenes, associating terminally functionalized polyisoprenes and randomly associating polybutadienes with the theoretical predictions of the proposed phenomenological model shows an excellent agreement. 相似文献
15.
Vitrimers encompass the desirable mechanical properties of thermosets with the recyclability of thermoplastics. This ability arises from the rearrangement of the vitrimer covalent network upon heating via a bond shuffling mechanism while its cross-link density remains preserved. This unique feature makes vitrimers interesting candidates for the design of materials that combine dimensional stability at high temperatures and solvent resistance with the ability to be reshaped and processed. Despite these advantages, vitrimer exhibits significant creep at operating conditions where thermosets show little or no creep. As the mechanical properties of vitrimers not only depend on their chemical composition but also on the dynamics of the polymer chains, molecular dynamics (MD) simulations can provide detailed molecular mechanisms of the system of interest under macroscopic stress-induced deformations. In this regard, the recently developed MD/Monte Carlo simulation methodology capable of capturing the bond exchange mechanics in vitrimers is used to study the creep and recovery response of a coarse-grained model thermoset and vitrimer with a fast bond exchange rate. The time-stress superposition principle is then successfully applied to the creep response. The resulting universal curves enable us to predict the long-time creep behavior of both systems extending the timescale from 4 to over 10 orders of magnitude. 相似文献
16.
Thermally stimulated creep (TSCr) has been used to follow the viscoelastic behavior of some amine-cured epoxy networks below the glass transition. The investigation of the -180/+40°C temperature range has revealed two essential retardation modes characterizing localized motion of chain segments: the γ mode centered at ?155°C in all samples, and the well-known β mode observed around ?40°C in the stoichiometric network. The magnitude of the β mode was seen to decrease unexpectedly with the cross-link density, whereas its peak temperature and glass transition temperature both decreased. This evolution was confirmed by thermally stimulated currents (TSC) measurements and discussed on the basis of the antiplasticization concept. Water desorption under vacuum yielded additional information on the nature of the β mode and TSCr fractional loading experiments brought evidence that two types of relaxing units participate in β motions and furnished activation enthalpy data. © 1994 John Wiley & Sons, Inc. 相似文献
17.
Gunter Moeller 《Journal of Polymer Science.Polymer Physics》2009,47(16):1573-1587
We used atomic force microscopy (AFM) nanoindentation to measure mechanical properties of polymers. Although AFM is generally acknowledged as a high‐resolution imaging tool, accurate quantification of AFM nanoindentation results is challenging. Two main challenges are determination of the projected area for objects as small as AFM tips and use of appropriate analysis methods for viscoelastic materials. We report significant accuracy improvements for modulus measurements when large end‐radius tips with appropriate cantilever stiffnesses are used for indentation. Using this approach, the instantaneous elastic modulus of four polymers we studied was measured within 30 to 40% of Dynamic Mechanical Analysis (DMA) results. The probes can, despite their size and very high stiffnesses, be used for imaging of very small domains in heterogeneous materials. For viscoelastic materials, we developed an AFM creep test to determine the instantaneous elastic modulus. The AFM method allows application of a nearly perfect stepload that facilitates data analysis based on hereditary integrals. Results for three polymers suggest that the observed creep in the materials has a strong plastic flow component even at small loads. In this respect, the spherical indenter tips behave like “sharp” indenters used in indentation studies with instrumented indenters. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1573–1587, 2009 相似文献
18.
Jan Kolaík 《Journal of Polymer Science.Polymer Physics》2003,41(7):736-748
The dimensional stability of thermoplastics is characterized by their tensile compliance D(t,σ,T) as a function of time t, stress σ, and temperature T. Creep retardation times are controlled by the free volume available for underlying molecular (segmental) motions. Tensile deformation of polymeric materials, whose Poisson ratio is smaller than 0.5, is accompanied by volume dilatation that can be identified with an increase in available free volume. Consequently, a steady increase in strain with time during tensile creep experiments accounts for shortening of the retardation times. The superposition of as‐received tensile compliance curves is difficult because any point of a curve requires a shift factor along the time axis that differs from those of other points. In this article, tensile creep at a constant stress and temperature is viewed as a non‐iso free‐volume process. A procedure is proposed to transform as‐received data to a pseudo‐iso free‐volume state that eliminates this deficiency and permits construction of a generalized compliance curve for the pseudo‐iso free‐volume state. This curve can be used for calculation of real‐time‐dependent compliance for any selected stress in the range of reversible deformations. As the superposed curve can be generated with several short‐term creep tests (e.g., 100 min) for a series of stresses, the proposed procedure saves experimental time. The effects of physical aging on tensile compliance (observed previously by other researchers) are interpreted in terms of the proposed approach in appendix A . © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 736–748, 2003 相似文献
19.
R. J. Windslow 《Soft Materials》2019,17(3):228-240
ABSTRACTThe viscoelastic behavior of elastomers manifests itself in numerous ways depending on the application. In seals, the viscoelastic response of an elastomer is complex as it depends upon the specific combination of loading pressures, loading rates, chemical environment, temperature and time of loading, and ultimately long-term effects such as creep or stress relaxation can result in seal failure. One specific mechanism encountered in seals under large pressures is extrusion damage. When a seal is pressurized by a fluid, the elastomer is highly constrained; however, there is typically a very small gap between the inner and outer sealing surfaces. Over time viscoelastic creep causes the elastomer to gradually extrude into this gap until the seal ruptures. In this paper the viscoelastic creep behavior of a typical sealing elastomer, NBR, was studied. Compression creep tests were carried out over a range of strains and the measured data were used to develop a strain-dependent viscoelastic material model. The model was then implemented into a finite element analysis (FEA) simulation to study the extrusion creep behavior of an O-Ring seal. Data from the FEA model were then compared against physical test data from equivalent extrusion tests. The FEA model correlated well to the physical test data, with the strain-dependent viscoelastic material model allowing compression creep data to be used to accurately predict extrusion creep. 相似文献
20.
嵌段共聚物熔体流变行为研究进展 总被引:2,自引:0,他引:2
微相分离的结构特点赋予了嵌段共聚物很多优异的性能,使其广泛应用于汽车部件及工具手柄、电线电缆包皮或绝缘带、医疗制品及食品容器、密封胶、粘合剂、涂料以及聚合物共混改性等领域。聚合物流变特性直接关系到材料加工参数的选择以及产品最终性能,是聚合物结构设计、材料加工参数优化选择及拓展产品应用领域的理论基础。本文对嵌段共聚物的熔体流变行为进行了综述,着重介绍了与嵌段共聚物特殊结构相对应的流变特性,以及流变特性与相行为之间的关联,并提出了嵌段共聚物熔体流变行为研究的前沿与重点。 相似文献