首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic framework (MOF) nano particles are a class of promising porous nano materials for biomedical applications. Owing to its high loading potential and pH-sensitive degradation, most promising of the MOFs is the zeolitic imidazolate crystal framework (ZIF-8), a progressive useful material for small molecule distribution. Doxorubicin (DOX), designated as a classical drug, was jobwise entrapped in ZIF-8 nano particles. ZIF-8 nano particles, as a novel carrier, were used to monitor the release of the anticancer drug DOX and prevent it from dissipating before reaching its goal. ZIF-8 nano particles with encapsulated DOX (DOX@ZIF-8) can be synthesized in a single pot by incorporation of DOX into the reaction mixture. MOFs and the designed drug delivery (DOX@ZIF-8) system were characterized by Fourier transfer infrared, scanning electron microscopy, N2 sorption isotherm and X-ray diffraction. The impact of MOFs and the engineered drug delivery system on the viability of human breast and liver cancer cell lines was evaluated. The loaded drug was released at pH 5 faster than at pH 7.4. The nano particles of ZIF-8 showed low cytotoxicity, while DOX@ZIF-8 showed high cytotoxicity to HepG-2 and MCF-7 cells compared with free DOX at the equivalent concentration of DOX of >12.5 μg/ml. These findings indicate that DOX@ZIF-8 nano particles are a promising method for the delivery of cancer cells to drugs. Furthermore, ZIF-8, DOX and encapsulated DOX@ZIF-8 compounds were screened for their potential antibacterial activities against pathogenic bacteria compared with standard antibiotics by the agar well diffusion technique. The results demonstrate that the DOX@ZIF-8 exhibits a strong inhibition zone against Gram-negative strains (Escherichia coli) in comparison with the reference drug gentamycin. The docking active site interactions were evaluated to predict the binding between DOX with the receptor of breast cancer 3hb5-oxidoreductase and liver cancer 2h80-lipid binding protein for anticancer activity.  相似文献   

2.
针对抗肿瘤小分子药物靶向性差、疗效低和毒副性大等缺陷,我们以Y型分子筛(YMS)为基体、阿霉素(DOX)为药物模型,通过pH调控,借助氢键和范德华力等物理作用力制备得到高负载Y型分子筛纳米药物体系(YMS?DOX)。采用UV?Vis、FT?IR、粒径和电位测试及荧光光谱证实YMS?DOX成功制备,且DOX的负载率可高达99.61%。体外药物释放测试发现YMS?DOX具有pH响应释放特性,在肿瘤环境中(pH=4.5)的药物释放量为正常生理环境(pH=7.4)中的3.8倍,表明其具有良好的药物输送特性。此外,利用流式细胞术和MTT测试法探究了YMS?DOX对乳腺癌细胞(MM?231)和树突细胞(DC)的细胞凋亡和毒性,结果表明YMS?DOX可以诱导肿瘤细胞凋亡,且可降低对正常细胞的毒副作用。  相似文献   

3.
In this study, we prepared mitochondrion targeting peptide-grafted magnetic graphene oxide (GO) nanocarriers for efficient impairment of the tumor mitochondria. The two-dimensional GOMNP-MitP nanosheets were synthesized by grafting magnetic γ-Fe2O3 to the surface of GO, followed by covalent modification of mitochondrion targeting peptide (MitP). GOMNP-MitP exhibited the high capacity of loading the anticancer drug mitoxantrone (MTX), and preferentially targeted the tumor mitochondria. With the aid of alternating magnetic field (AMF), the MTX-loading GOMNP-MitP released MTX to the mitochondria, severely impairing mitochondrial functions, including attenuation of ATP production, decrease in mitochondrial membrane potential (MMP), and further leading to activation of apoptosis. This study realized high-efficient mitochondrion-targeting drug delivery for anticancer therapy by two-dimensional nanoplatforms.  相似文献   

4.
以具有丰富接枝侧链的阴离子型共轭聚合物分子刷PFPANa为材料,通过简单的一步修饰法在聚合物的部分接枝侧链上引入靶向配体分子c(RGDyK),并利用分子刷侧链上未修饰配体分子的羧基负离子与抗癌药物DOX静电结合,制备了基于分子刷型共轭聚合物的靶向细胞成像和载药系统.研究结果表明载药系统对DOX药物的载药量可达13.3 wt%,体外细胞实验研究结果表明该载药系统可实现对肿瘤细胞的靶向选择性成像,并显著促进了肿瘤细胞对DOX药物的摄取,具有良好的抗肿瘤细胞生长效果,显著提高了药物运输效率.  相似文献   

5.
Among smart activable nanomaterials used for nanomedicine applications, carbon-based nanocomposites are well known to ensure phototherapy while their use for controlled drug delivery is still rarely investigated. In this work, original hybrid mesoporous silica (MS)–coated carbon nanotubes (CNTs) nanoplatforms have been designed to provide phototherapy combined with drug release mediated by NIR laser excitation. The responsive CNT@MS are chemically modified with original isobutyramide (IBAM) grafts acting as non-covalent binders, which ensure a very high drug loading capacity (≥to 80 wt%) of the antitumor drug doxorubicin (DOX) as well as the final adsorption of a human serum albumin (HSA) shell as biocompatible interface and drug gate-keeping. The drug is demonstrated to unbind from the nanocomposite only upon photothermal excitation and to release in the solution. Such smart platforms are further shown to deliver drug upon several pulsatile NIR excitations with controlled temperature profiles. Regarding antitumor action, we demonstrate here that the NIR light induced photothermic effect from the nanocomposites is the main effect accounting for cancer cell toxicity and that DOX delivery mediated by the NIR light brings an additional toxicity allowing a synergistic effect to efficiently kill tumor cells. Finally, when our nanocomposites are embedded within a hydrogel mimicking extracellular matrix, the resulting smart responsive scaffolds efficiently release DOX upon NIR light to the cells localized above the composite hydrogel. These results demonstrate that such nanocomposites are highly promising as new components of implantable antitumor scaffolds that are able to respond to external stimuli in time and location for a better disease management.  相似文献   

6.
Lacking of substantial physiological activity and low utilization remains a problem for most conventional drug carriers. Polyprenol with beneficial medical effects and high availability could be an ideal candidate for solving this issue. Here, Ginkgo biloba leaves polyprenol (GBP)-based derivative was prepared by Michael addition reaction of poly (β-amino esters) (PBAE) with GBP and galactose (Gal). The intervention of poly (β-amino ester) and galactose promoted GBP-PBAE-Gal to depict as micellar carrier, enhancing the loading of hydrophobic DOX and the sensitivity to the specific tumor microenvironment, with the largest DOX loading of 28.62 ± 1.49 % and the efficient DOX release rate of 90.30 %. In the meantime, GBP-PBAE-Gal exhibited enhanced colloidal stability at 640-folds of dilution and in the presence of serum and realized the possibility of long-term storage at room temperature. Additionally, GBP-PBAE-Gal was safe for human red blood cells and human normal liver cells HL-7702. When applied for DOX delivery to HepG2 cells, GBP-PBAE-Gal increased the targeting of DOX to intensify its inhibition on HepG2 cells. Compared to free DOX, the DOX loaded into GBP-PBAE-Gal presented stronger anticancer activity, with IC50 of 0.56 μg/mL at 72 h. Besides, the anticancer mechanism study revealed that GBP-PBAE-Gal arrested the cell cycle in HepG2 cells, suggesting the potential of GBP-based carrier for intensive treatment. This research evidenced the feasibility and high availability of the GBP to use as a drug carrier, providing a novel candidate for drug delivery systems.  相似文献   

7.
通过EDC/NHS偶联反应将疏水性肝靶向小分子甘草次酸(GA)连接到天然多糖海藻酸钠(ALG)上,制备了具有双亲性肝靶向药物载体材料(GA-ALG).采用乳化法对广谱抗癌药物阿霉素(DOX)进行包载,得到肝靶向载药纳米粒子( DOX/GA-ALG NPs).利用单光子发射型计算机断层成像技术(SPECT)和药物体内分布...  相似文献   

8.
袁直 《高分子科学》2014,32(5):540-550
A series of drug delivery systems based on a sodium alginate derivative were prepared by mixing glycyrrhetinic acid(GA) and doxorubicin(DOX) conjugates at different ratios. GA(a liver-targeting ligand) and DOX(an antitumor drug) were both conjugated to oligomeric glycol monomethyl ether-modified sodium alginate(ALG-mOEG) for prolonged duration of action. These NP-based delivery systems exhibited active cell uptake and cytotoxicity in vitro and liver-targeted distribution and anti-tumor activity in vivo. In addition, nanoparticles with a 1:1(W:W) ratio of GA-ALG-mOEG and DOXALG-mOEG(NPs-3) showed the highest cellular uptake and cytotoxicity in vitro and liver-targeted distribution and antitumor activity in vivo. Specifically, when mixed nanoparticles defined as NPs-3 were injected in mice, liver DOX concentration reached 61.9 μg/g 3 h after injection, and AUC0-∞ and t1/2 of DOX in liver reached 4744.9 μg·h/g and 49.5 h, respectively. In addition, mice receiving a single injection of NPs-3 exhibited much slower tumor growth(88.37% reduction in tumor weight) 16 days after injection compared with placebo. These results indicate that effective cancer treatment may be developed using mixed NP delivery systems with appropriate ratio of targeted ligand and drug.  相似文献   

9.
The use of natural compounds to construct biomaterials, including delivery system, is an attractive strategy. In the present study, through threading functional α‐cyclodextrins onto the conjugated macromolecules of poly(ethylene glycol) (PEG) and natural compound bile acid, glycopolymers of polyrotaxanes with the active targeting ability are obtained. These glycopolymers self‐assemble into micelles as evidenced by dynamic light scattering and transmission electron microscopy, in which glucosamine, as an example of targeting groups, is introduced. These micelles after loading doxorubicin (DOX) exhibit the selective recognition with cancer cells 4T1. Meanwhile, the maximal half inhibitory concentration is determined to be ≈2.5 mg L?1 for the DOX‐loaded micelles, close to the value of free DOX·HCl (1.9 mg L?1). The cumulative release of DOX at pH 5.5 is faster than at pH 7.4, which may be used as the controlled release system. This drug delivery system assembled by glycopolymers features high drug loading of DOX, superior biocompatibility. The strategy not only utilizes the micellization induced by bile acids, but also overcomes the major limitation of PEG such as the lack of targeting groups. In particular, this drug delivery platform can extend to grafting the other targeting groups, rendering this system more versatile.  相似文献   

10.
以金纳米笼(AuNC)为核, 巯基化改性的透明质酸(LC-HA)为壳, 盐酸阿霉素(DOX)为药物模型, 通过简单的一锅法制备了核壳结构载药纳米粒子DOX@AuNC@HA(DAH). 金纳米笼为药物装载提供容器且赋予载体光热性能, 改性的透明质酸对金纳米笼进行包封并提供pH/酶响应及靶向介导功能. 对DAH的结构进行了表征, 并进行了载药、 控释性能以及细胞摄取和细胞毒性的研究. 结果表明, 核壳结构纳米微粒DAH具有较高的载药能力, 在激光源的照射下具有较好的循环稳定性和较高的光热转换率. 在pH=7.4的磷酸盐缓冲液中, DAH具有较高的稳定性, 20 h的药物泄露率低于20%; 而在酸性环境、 透明质酸酶(HAase)及光热作用下, DAH均能较快地释放出装载的药物, 展现出较好的刺激响应性. 此外, DAH能够更多地被肿瘤细胞摄取, 表现出一定的靶向性; 当化疗与光热疗法共同作用时, 肿瘤细胞的活性大大减弱, 展现出了联合疗法的优势及潜力.  相似文献   

11.
A new type of drug delivery system (DDS) involved chitosan (CHI) modified single walled carbon nanotubes (SWNTs) for controllable loading/release of anti-cancer doxorubicin (DOX) was constructed. CHI was non-covalently wrapped around SWNTs, imparting water-solubility and biocompatibility to the nanotubes. Folic acid (FA) was also bounded to the outer CHI layer to realize selective killing of tumor cells. The targeting DDS could effectively kill the HCC SMMC-7721 cell lines and depress the growth of liver cancer in nude mice, showing superior pharmaceutical efficiency to free DOX. The results of the blood routine and serum biochemical parameters, combined with the histological examinations of vital organs, demonstrating that the targeting DDS had negligible in vivo toxicity. Thus, this DDS is promising for high treatment efficacy and low side effects for future cancer therapy.  相似文献   

12.
Chen ML  Liu JW  Hu B  Chen ML  Wang JH 《The Analyst》2011,136(20):4277-4283
It is difficult to achieve fluorescent graphene-quantum dots (QDs) conjugation because graphene quenches the fluorescence of the QDs. In the present study, the conjugation of graphene (reduced graphene oxide, RGO) with QDs via a bridge of bovine serum albumin (BSA) provides a novel highly fluorescent nano probe for the first time. BSA capped QDs are firmly grafted onto polyethylenimine (PEI)/poly(sodium 4-styrenesulfonate) (PSS) coated RGO (graphene-QDs) via electrostatic layer by layer assembly. The strong luminescence of the graphene-QDs provides a potential for non-invasive optical in vitro imaging. The graphene-QDs are used for in vitro imaging of live human carcinoma (Hela) cells. Graphene-QDs could be readily up-taken by Hela cells in the absence of specific targeting molecules, e.g., antibodies or folic acid, and no in vitro cytotoxicity is observed at 360 μg mL(-1) of the graphene-QDs. The results for the imaging of live cells indicated that the cell-penetrating graphene-QDs could be a promising nano probe for intracellular imaging and therapeutic applications.  相似文献   

13.
Mesoporous silica nanoparticles (MSN) were coated by pH‐responsive polymer chitosan‐poly (methacrylic acid) (CS‐PMAA). This nano drug delivery system showed good application prospects and the polymer‐coated microspheres were promising site‐specific anticancer drug delivery carriers in biomedical field. A continuous detection of pH‐responsive drug delivery system in cells in situ, utilizing MSN/CS‐PMAA composite microspheres, was proposed. Two kinds of different cell lines, tumor cell line (Hela) and normal somatic cells (293T), were used to investigate the behaviours of the drug loaded system in the cells. Conclusions could be drawn from the fluorescent images obtained by confocal laser scanning microscopy (CLSM), modified drug‐loaded microspheres (MSN/CS‐PMAA) were ingested into cells more easily, the uptake of DOX@FITC‐MSN/CS‐PMAA by HeLa/293T cells were performed at pH 7.4/pH 6.8, DOX was released during the ingestion process, fluorescence intensity decreased with time because of efflux transport and photo‐bleaching. Fluoresence detection by flow cytometry was performed as comparison. The continuous fluorescent observation in situ could be widely used in the pH‐responsive releasing process of drug delivery system in the cells.  相似文献   

14.
在聚乙二醇二胺(NH_2-PEG-NH_2)修饰的石墨烯量子点(GODs)表面以酰胺键偶联二乙基三胺五乙酸(DTPA)分子,之后将Gd~(3+)离子与其进行配合,得到了GODs-Gd(DTPA)复合纳米粒子,然后再通过酰胺键在GODs-Gd(DTPA)的表面修饰叶酸(FA)靶分子,最后进一步将阿霉素(DOX)通过π-π堆垛吸附在造影剂的表面,制备了FA/GODs-Gd(DTPA)/DOX荧光/MRI双模态靶向肺癌细胞成像诊疗试剂,通过透射电子显微镜、紫外可见吸收光谱、荧光光谱和激光共聚焦扫描显微镜等手段表征了其形貌、发光性能和靶向成像性能。MRI、激光共聚焦扫描显微镜和MTT等结果表明,相对于正常的HLF细胞,所制备的FA/GODs-Gd(DTPA)/DOX纳米粒子能够靶向检测FA受体高表达的肺癌H460细胞,并具有明显的抗肿瘤活性。  相似文献   

15.
Nanoparticles (NPs) with ternary components of polyethyleneimine (PEI), poly-(γ-glutamic acid) (γ-PGA), and poly(lactide-co-glycolide) (PLGA) were applied to carry and release saquinavir (SQV). Hydrophobic SQV was encapsulated in the particle core composed of PLGA to form SQV-PLGA NPs, and the surface of SQV-PLGA NPs was grafted successively with hydrophilic γ-PGA and PEI (PEI/γ-PGA/SQV-PLGA NPs). The morphological images revealed that PEI/γ-PGA/SQV-PLGA NPs were spheroid-like, in general. An increase in the concentration of didecyl dimethylammonium bromide and a reduction in the dose of SQV enhanced the entrapment efficiency of SQV in PLGA NPs. In addition, an increment in the molecular weight of γ-PGA reduced the grafting efficiency of PEI on γ-PGA/SQV-PLGA NPs. An increase in the weight percentage of PEI enhanced the average particle diameter. However, the grafting efficiency of PEI on γ-PGA/SQV-PLGA NPs and the dissolution rate of SQV from PEI/γ-PGA/SQV-PLGA NPs reduced when the weight percentage of PEI increased. PEI/γ-PGA/SQV-PLGA NPs are an innovative drug delivery system and can be used for antiretroviral trials.  相似文献   

16.
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600±15 nm), a negative surface potential (-36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

17.
《中国化学快报》2020,31(12):3158-3162
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600 ± 15 nm), a negative surface potential (−36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

18.
The porous nano-sized metal–organic framework (nanoMOF) and its proper surface modification could greatly promote the drug loading capability and introduce biocompatibility, biodegradability, and targeting functions into nano-drug delivery systems. Herein, the HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was successfully fabricated through supramolecular and coordination interactions from three building blocks, including hierarchically porous MIL-101_NH2 (Fe)-P nanoMOF, phosphite-modified adamantane (ADA-PA), and β-cyclodextrin (β-CD)-modified hyaluronic acid (HACD). The obtained HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was nano-sized and highly stable in physiological fluids. The porous structure of HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle could effectively load the commercial chemotherapeutic drug doxorubicin (DOX) with an encapsulation rate of 41.20 % and a loading rate of 48.84 %. The obtained drug-loaded HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle was pH-sensitive and relatively stable at neutral condition (pH 7.2) but could release DOX in a controlled way in subacid solution at pH 5.7. The simulated in vitro DOX release experiment signified that the HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle could realize the controlled release of DOX in tumor issues.  相似文献   

19.
20.
《中国化学快报》2020,31(5):1178-1182
Cancer therapy with nanoscale drug formulations has made significant progress in the past few decades. However, the selective accumulation and release of therapeutic agents in the lesion sites are still great challenges. To this end, we developed a cRGD-decorated pH-responsive polyion complex (PIC) micelle for intracellular targeted delivery of doxorubicin (DOX) to upregulate tumor inhibition and reduce toxicity. The PIC micelle was self-assembled via the electrostatic interaction between the positively charged cRGD-modified poly(ethylene glycol)-block-poly(l-lysine) and the anionic acid-sensitive 2,3-dimethylmaleic anhydride-modified doxorubicin (DAD). The decoration of cRGD enhanced the cell internalization of PIC micelle through the specific recognition of αvβ3 integrin on the membrane of tumor cells. The active DOX was released under intracellular acidic microenvironment after endocytosis following the decomposition of DAD. Moreover, the targeted PIC micelle exhibited enhanced inhibition efficacies toward hepatoma in vitro and in vivo compared with the insensitive controls. The smart multifunctional micelle provides a promising platform for target intracellular delivery of therapeutic agent in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号