首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in situ ultrasonic spectroscopy technique was used to study the ring‐opening metathesis polymerization of dicyclopentadiene catalyzed by bis(tricyclohexylphosphine)benzylidene ruthenium dichloride. A reaction cell employing a flexible poly(ethylene terephthalate) window for pulse echo ultrasonic spectroscopy was used to monitor the polymerization. The changes in the density, wave speed, acoustic modulus, and attenuation were all simultaneously monitored. In comparison with Fourier transform infrared (FTIR) spectroscopy data, the changes in the density, velocity, and modulus only accurately measured the rate constant for the metathesis of the cyclopentyl unsaturation. The ultrasonic values were within 6% of the values determined by FTIR. The activation energy for metathesis of the cyclopentyl unsaturation was 84 kJ mol?1, following first‐order kinetics. Rate constants for the polymerization of the norbornyl unsaturation could not be determined by ultrasound. The gel point, vitrification, and qualitative information about the reaction rate could be determined from the change in the attenuation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1323–1333, 2003  相似文献   

2.
Summary: Advances in design of latent ruthenium phenylindenylidene catalysts bearing salicylaldimine ligands for ring-opening metathesis polymerization are described. The presence of the substituents in ortho position in N-aryl ring of salicylaldimine ligand has been found to be the main factor determining the catalyst stability. The best of the studied catalysts after acid activation offers activity comparable to that of the dichloride systems in ring-opening metathesis polymerization of DCPD, while maintaining very high stability in the monomer solution.  相似文献   

3.
A route of synthesizing triblock terpolymers in a one‐pot, “one‐step” polymerization approach is presented. The combination of two distinct polymerization techniques through orthogonal catalyst/initiator functionalities attached to a polymeric linker furnishes novel pathways to ABC‐terpolymers. Both polymerizations have to be compatible regarding mechanisms, chosen monomers, and solvents. Here, an α,ω‐heterobifunctional poly(ethylene glycol) serves as poly­meric catalyst/initiator to obtain triblock terpolymers of poly(norbornene)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactic acid) PNB‐PEG‐PLLA via simultaneous ring opening metathesis poly­merization and ring opening polymerization in a fast one‐pot polymerization. Structural characterization of the polymers is provided via 1H‐, DOSY‐, and 1H,1H‐COSY‐NMR, while solution and thin film self‐assembly are investigated by dynamic light scattering and atomic force microscopy.

  相似文献   


4.
    
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation.  相似文献   

5.
    
Using a one-step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock-like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock-like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer-carbene to G3 benzylidene/alkylidene transformation.  相似文献   

6.
曹堃  付强  周立武  姚臻 《化学进展》2012,24(7):1368-1377
作为一种新型工程材料,近年来聚双环戊二烯(polydicyclopentadiene, PDCPD)的研究备受关注。PDCPD多采用反应注塑成型工艺,需要在反应前有足够的储存稳定期以保证物料的混合和注模。本文介绍了不同催化体系的优缺点,着重阐述了极具应用前景的新兴Grubbs潜伏型催化剂最新进展,包括热触发型、化学触发型和光触发型等,并对其结构、性能及反应机理进行了详细分析。同时,围绕配体结构对催化特性的影响,对如何提高催化剂的潜伏性且保持其催化活性进行了对比和剖析。其中,螯合结构和O、S、N等杂原子基团的引入,提高了催化剂的潜伏性,但催化活性会有一定程度的下降。此外,还评述了聚双环戊二烯改性方面的相关研究,并对聚双环戊二烯产业发展的趋势进行了展望。  相似文献   

7.
Various poly(macromonomer)s (PMMs) have been prepared by a repeating ring opening metathesis polymerization (ROMP) technique using the well-defined molybdenum initiators of the type, [Mo(CHCMe(2)Ph)(NAr)(OR)(2)] with OR=OCMe(3), OCMeC(CF(3))(2); Ar=2,6-iPr(2)C(6)H(3), 2,6-Me(2)C(6)H(3). The synthetic strategy is based on the polymerization of norbornene and its derivatives affording di- and triblock side chains bearing sugars (mannose, galactose, glucose etc.), linked via O- (ester), and glycosidase resistant C- (isoxazoline) glycosides. The efficient placement of norbornene units on the side chain termini and their conversion into PMMs, facilitated by the Mo alkylidenes, proceeded in a living manner with the quantitative initiation. The methodology was applied to prepare poly(macromonomer)-graft-PEG [PEG: poly(ethylene glycol)], by the attachment of a pseudo phenol terminus on the PMM main chain to PEG-Ms(2) [MsO(CH(2)CH(2)O)(n)Ms, Ms=MeSO(2)] using a "grafting to" approach. Removal of the acetal protecting groups from the sugar coating of a variety of supramolecular structures including PMMs, linear amphiphilic block copolymers (ABC) and a PMM-graft-PEGby using trifluroacetic acid/water (9:1), and suspension in water, prompted the spontaneous formation of spherical architectures by self-assembly of the amphiphilic PMMs as observed by transmission electron microscopy (TEM). The ability to uptake the hydrophobic dye (Nile Red) into the micellar cores of a variety of amphiphilic polymeric fragments is a significant step towards the production of sugar-coated nanospheres for cell-targeting biomimetic applications.  相似文献   

8.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

9.
    
Metal‐free entropy‐driven disulfide metathesis polymerization of unsaturated l ‐cystine based macrocycles produces high‐molar‐mass heterofunctional poly(disulfide)s, i.e., poly(ester‐disulfide‐alkene) and poly(amide‐disulfide‐alkene); Mwapp = 44–60 kDa, Ð > 1.7. The polymerization is fast and reaches equilibrium within 1–5 minutes (monomer conversion 70–90%) in polar aprotic solvents such as N,N‐dimethylacetamide, dimethylsulfoxide, or γ‐valerolactone. Thiol‐terminated polymers are stable in bulk or when dissolved in weakly polar solvents, but rapidly depolymerize in dilute polar solution.  相似文献   

10.
11.
12.
    
The synthesis of diblock and triblock linear polyolefins via ring opening metathesis polymerization (ROMP) in an aqueous nanoparticle dispersion is presented. The different block polyolefins are synthesized from the cyclic olefins 1,5‐cyclooctadiene and norbornene (NB), using a water‐soluble TEGylated ruthenium alkylidene catalyst, yielding the structures PCOD‐b‐PNB, PNB‐b‐PCOD, and PCOD‐b‐PNB‐b‐PCOD. High monomer conversion (>90%), monitored by NMR, is achieved in relatively short times (≈1 h) for the polymerization of each block. The livingness of the system, essential to obtain block copolymers, is confirmed by gel permeation chromatography. Latex particles' size during the multiple steps range between 90 and 150 nm. The results demonstrate that it is possible to obtain nanoparticle latexes from ROMP‐based monomers with block copolymer architectures, creating the opportunity to copolymerize olefins bearing different functional groups for the synthesis of new materials.  相似文献   

13.
Polybenzoxazine is a newly developed addition polymerized phenolic system, having a wide range of interesting features and the capability to overcome several shortcomings of conventional novolac and resole type phenolic resins. They exhibit (i) near zero volumetric change upon curing, (ii) low water absorption, (iii) for some polybenzoxazines Tg much higher than cure temperature, (iv) high char yield, (v) no strong acid catalysts required for curing, (vi) release of no byproduct during curing and also possess thermal and flame retarding properties of phenolics along with the mechanical performance. Though benzoxazine based materials possess several advantages, they have not yet became very attractive to the industries. To improve the mechanical properties and processibility several strategies have been reported including (i) synthesis of benzoxazine monomers with additional functionality, (ii) incorporation of benzoxazine in polymer chain, and (iii) benzoxazine based composites or alloys. In this article, we have discussed about the recent development of benzoxazine chemistry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5565–5576, 2009  相似文献   

14.
A series of RuIV–alkylidenes based on unsymmetrical imidazolin‐2‐ylidenes, that is, [RuCl2{1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHPh)(pyridin)] (R=CH2Ph ( 5 ), Ph ( 6 ), ethyl ( 7 ), methyl ( 8 )), have been synthesized. These and the parent initiators [RuCl2(PCy3){1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHC6H5)] (R=CH2C6H5 ( 1 ), C6H5 ( 2 ), ethyl ( 3 )) were used for the alternating copolymerization of norborn‐2‐ene (NBE) with cis‐cyclooctene (COE) and cyclopentene (CPE), respectively. Alternating copolymers, that is, poly(NBE‐alt‐COE)n and poly(NBE‐alt‐CPE)n containing up to 97 and 91 % alternating diads, respectively, were obtained. The copolymerization parameters of the alternating copolymerization of NBE with CPE under the action of initiators 1 – 3 and 5 – 8 were determined by using both a zero‐ and first‐order Markov model. Finally, kinetic investigations using initiators 1 – 3 , 6 , and 7 were carried out. These revealed that in contrast to the 2nd‐generation Grubbs‐type initiators 1 – 3 the corresponding pyridine derivatives 6 and 7 represent fast and quantitative initiating systems. Hydrogenation of poly(NBE‐alt‐COE)n yielded a fully saturated, hydrocarbon‐based polymer. Its backbone can formally be derived by 1‐olefin polymerization of CPE (1,3‐insertion) followed by five ethylene units and thus serves as an excellent model compound for 1‐olefin polymerization‐derived copolymers.  相似文献   

15.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

16.
In an attempt to introduce monomer sequence control in a growing polynorbornene via ring‐opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid‐labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1236–1242  相似文献   

17.
ThisProjectwassupportedby"NationalNaturalScienceFoundationofChina(projectapprovalnumber29474160)"and"FOundationofStateKeyLaboratoryofFunctionalPolymericMaterialsforAdsorptionandSeparation,NankaiUniversity(kf035)".ThisisalsoaninvitedlecturegivenattheChemistryDepartmentofSophiaUniversity,Japan,onJan.14,1998.ReceivedMay5,1998##D1NTRODUCTIONInrecentyearssomedramaticadvancesinthefieldofROMPhaveattractedgreatinterestandattentionofscientistsengagedinthedesignandtailoringofmolecularstr…  相似文献   

18.
Novel photoresponsive linear, graft, and comb‐like copolymers with azobenzene chromophores in the main‐chain and/or side‐chain are prepared via a sequential ring‐opening metathesis polymerization (ROMP) and head‐to‐tail acyclic diene metathesis (ADMET) polymerization in a one‐pot procedure using Grubbs ruthenium‐based catalysts. The diluted solutions of these as‐prepared copolymers containing azobenzene chromophores exhibit photochemical transcis isomerization under the irradiation of UV light, followed by their cistrans back‐isomerization in visible light. The rates of photoisomerization are found to be slower than those of back‐isomerization, and the rate for the comb‐like copolymer is found to be from 3 to 7 times slower than that obtained for the linear or graft copolymer. This is ascribed to the differences in structure of the copolymers and the specific location of azobenzene chromophores in the copolymer, which favor a side‐chain graft structure.

  相似文献   


19.
20.
For many years, olefin metathesis has been a central topic of industrial and academic research because of its great synthetic utility. The employed initiators cover a wide range of compounds, from simple transition‐metal salts to highly sophisticated and well‐defined alkylidene complexes. Currently, ruthenium‐based catalysts are at the center of attention because of their remarkable tolerance toward oxygen, moisture, and numerous functionalities. This article focuses on recent developments in the field of ring‐opening metathesis polymerization using ruthenium‐based catalysts. ruthenium‐based initiators and their applications to the preparation of advanced polymeric materials are briefly reviewed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2895–2916, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号