首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, new classes of bio‐based polybenzoxazines were synthesized using eugenol as phenol source and furfurylamine and stearylamine as amine sources separately through solventless green synthetic process routes and were further reinforced with varying percentages (1, 3, 5, and 10 wt%) of silica (from rice husk) to attain hybrid composites. The molecular structure, cure behaviour, thermal stability, dielectric properties, and flame‐retardant behaviour of both benzoxazine monomers and benzoxazine composites were characterized using appropriate modern analytical techniques. The eugenol‐based benzoxazines synthesized using furfurylamine (FBz) and stearylamine (SBz) were cured at 223°C and 233°C, respectively. The differential scanning calorimetry (DSC) data reveal the glass transition temperatures (Tg) of FBz and SBz were 157°C and 132°C, respectively, and the maximum decomposition temperature (Tmax) as obtained from thermogravimetric analysis (TGA), were found to be 464°C and 398°C for FBz and SBz, respectively. The dielectric constants for FBz and SBz obtained at 1 MHz were 3.28 and 3.62, respectively. Furthermore, varying weight percentages (1, 3, 5, and 10 wt%) of 3‐mercaptopropyltrimethoxysilane (3‐MPTMS) functionalized bio‐silica reinforced the composite materials as evidenced by their improved thermal stability and lower dielectric constant. Data obtained from thermal and dielectric studies suggested that these polybenzoxazines could be used in the form of adhesives, sealants, and composites for high performance inter‐layer low‐k dielectric applications in microelectronics.  相似文献   

2.
The novel benzoxazine monomers, DPA‐Bz and MDP‐Bz from renewable diphenolic acid (DPA), which mimics the structure of bisphenol A (BPA), were synthesized by traditional approaches. The structure and purity of the monomers was confirmed by FTIR, 1H NMR, and 13C NMR spectra. The thermally activated polymerization of the MDP‐Bz and DPA‐Bz afforded thermosetting polybenzoxazines with higher Tg's, 270 °C and 208 °C respectively, and higher crosslinking density compared to BPA‐Bz, due to the transesterification or esterification reactions occurred during curing process. These reactions are in accordance with the number of independent reactions determined analyzing by SVD the chemical rank of the IR spectra data matrices recorded along the homopolymerization reactions monitored at 200 °C. Spectral and concentration profiles of the active chemical species involved in these processes were obtained by MCR‐ALS. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Furan‐containing benzoxazine monomers, 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐FBz) and bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz), were prepared using furfurylamine as a raw material. The chemical structures of P‐FBz and BPA‐FBz were characterized with FTIR, 1H NMR, elemental analysis, and mass spectrometry. Formation of furfurylamine Mannich bridge networks in the polymerizations of P‐FBz and BPA‐FBz increased the cross‐linking densities and thermal stability of the resulting polybenzoxazines. P‐FBz‐ and BPA‐FBz‐based polymers also exhibited high glass transition temperatures above 300 °C, high char yields, and low flammability with limited oxygen index values of 31. The dielectric (Dk = 3.21–3.39) and mechanical properties (high storage modulus of 3.0–3.9 GPa and low coefficient of thermal expansion of 37.7–45.4 ppm) of the P‐FBz‐ and BPA‐FBz‐based polymers were superior or comparable to other polybenzoxazines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5267–5282, 2005  相似文献   

4.
Developing thermosets derived from renewable sources is of great importance. In this work, a fully bio-based benzoxazine monomer, 3,6-bis((3-(furan-2-ylmethyl)-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-yl)methyl)piperazine-2,5-dione (TCDPF), is conveniently synthesized from L-tyrosine cyclic dipeptide (TCDP), furfurylamine and paraformaldehyde. The chemical structure of TCDPF is confirmed by nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy (FT-IR) techniques. The curing behavior of TCDPF is investigated by differential scanning calorimetry and in situ FT-IR techniques. After temperature-programmed curing, the thermomechanical property and thermal stability of the resulting TCDPF polymer (PTCDPF) are evaluated by dynamic mechanical analysis and thermogravimetric analysis techniques, respectively. It is found that PTCDPF have excellent comprehensive performance such as high glass transition temperature (Tg = 322 °C), high thermal degradation temperature (T5% = 342 °C, T10% = 395 °C in N2 atmosphere), and high char yield (CY = 51.3% at 800 °C in N2 atmosphere). The results demonstrate that L-tyrosine is a promising bio-based raw material for preparing high performance polybenzoxazines.  相似文献   

5.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Two polybenzoxazines are cured in an autoclave from the polyfunctional benzoxazine monomers, 8,8′-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine) and 6,6′-bis(2,3-dihydro-3-phenyl-4H-1,3-benzoxazinyl) ketone. The density and tensile properties of these polybenzoxazines are measured at room temperature. Dynamic mechanical tests are performed to determine the Tg, crosslink density, and the activation enthalpy of the glass-transition process for these two polybenzoxazines. The effect of postcure temperature on the Tg of the polymers is investigated and discussed in terms of crosslink density. Fourier transform infrared (FTIR) spectroscopy is also applied for the molecular characterization of the curing systems. Thermal properties of these polybenzoxazines are studied in terms of isothermal aging and decomposition temperature via thermogravimetric analysis. These two polybenzoxazines show mechanical and thermal properties similar to or better than bismaleimides and some polyimides. They also show very high char yield after being carbonized in a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3257–3268, 1999  相似文献   

7.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

8.
An efficient strategy to synthesize novel biobased multifunctional benzoxazine compounds was developed using the 1,1,3,3-tetramethyl guanidine (TMG)-triggered esterification of natural phloretic acid with organic halides as a key synthetic step. First, phloretic acid was combined with either aniline or furfurylamine to prepare the corresponding carboxylic acid-functional monobenzoxazine monomer. Next, the use of TMG enabled an efficient esterification of these compounds with di-, tri-, and tetra-functional benzyl bromide compounds at room temperature to afford a series of new multi-benzoxazine monomers tethered to an aromatic core. The effect of the functionality of the monomers on the curing process was analyzed, indicating that the reactivity during the thermally induced ring-opening increases with the number of furan and oxazine rings in the monomers. The resulting thermosets revealed good correlation between the number of oxazine rings in the structure of the monomer and the properties of the crosslinked materials. Furfurylamine-based polybenzoxazines showed improved thermal behavior compared to the aniline-based systems, due to the role of furan rings. All materials showed high Tg, good thermal stability, and promising flame retardancy properties.  相似文献   

9.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

11.
Topological polymers possess many advantages over linear polymers. However, when it comes to the poly(monothiocarbonate)s, no topological polymers have been reported. Described herein is a facile and efficient approach for synthesizing well-defined branched poly(monothiocarbonate)s in a “grafting through” manner by copolymerizing carbonyl sulfide (COS) with epichlorohydrin (ECH), where the side-chain forms in situ. The lengths of the side-chains are tunable based on reaction temperatures. More importantly, enhancement in thermal properties of the branched copolymer was observed, as the Tg value increased by 22 °C, compared to the linear analogues. When chiral ECH was utilized, semicrystalline branched poly(monothiocarbonate)s were accessible with a Tm value of 112 °C, which is 40 °C higher than that of the corresponding linear poly(monothiocarbonate)s. The strategy presented herein for synthesizing branched polymers provides efficient and concise access to topological polymers.  相似文献   

12.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

13.
Topological polymers possess many advantages over linear polymers. However, when it comes to the poly(monothiocarbonate)s, no topological polymers have been reported. Described herein is a facile and efficient approach for synthesizing well‐defined branched poly(monothiocarbonate)s in a “grafting through” manner by copolymerizing carbonyl sulfide (COS) with epichlorohydrin (ECH), where the side‐chain forms in situ. The lengths of the side‐chains are tunable based on reaction temperatures. More importantly, enhancement in thermal properties of the branched copolymer was observed, as the Tg value increased by 22 °C, compared to the linear analogues. When chiral ECH was utilized, semicrystalline branched poly(monothiocarbonate)s were accessible with a Tm value of 112 °C, which is 40 °C higher than that of the corresponding linear poly(monothiocarbonate)s. The strategy presented herein for synthesizing branched polymers provides efficient and concise access to topological polymers.  相似文献   

14.
A series of novel borosiloxane/polybenzoxazine hybrids were synthesized through the copolymerization of 3,3′‐phenylmethanebis(3,4‐dihydro‐2H‐1,3‐benzoxazine) and phenol‐functionalized borosiloxane (BSi‐OH) oligomer. The structures were characterized using nuclear magnetic resonance and fourier transform infrared. The thermal and flame retardant properties of hybrids were investigated by dynamic mechanical analysis, thermogravimetric analysis, and oxygen index instrument. The results showed that the addition of BSi‐OH oligomer is not only highly efficient in environmentally friendly flame retardancy of polybenzoxazine, but also enhances its thermal property. Only 25 wt % content of BSi‐OH oligomer was able to increase the glass transition temperature, 5% weight loss temperature (Td5), 10% weight loss temperature (Td10), and limited oxygen index (LOI) value from original 211 °C, 374 °C, 395 °C, and 29.5 °C to 244 °C, 408 °C, 448 °C, and 40.1, respectively. This work provides a facile and useful method for the preparation of new polybenzoxazines possessing highly efficient and environmentally friendly flame retardance as well as heat resistance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2390–2396  相似文献   

15.
We propose three approaches to obtain flame‐retardant benzoxazines. In the first approach, we synthesize a novel benzoxazine (dopot‐m) from a phosphorus‐containing triphenol (dopotriol), formaldehyde, and methyl amine. Dopot‐m is copolymerized with a commercial benzoxazine [6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a)] or diglycidyl ether of bisphenol A (DGEBA). The thermal properties and flame retardancy of the F‐a/dopot‐m copolymers increase with the content of dopot‐m. As for the dopot‐m/DGEBA curing system, the glass‐transition temperature of the dopot‐m/DGEBA copolymer is 252 °C, which is higher than that of poly(dopot‐m). The 5% decomposition temperature of the dopot‐m/DGEBA copolymer increases from 323 to 351 °C because of the higher crosslinking density caused by the reaction of phenolic OH and epoxy. In the second approach, we incorporate the element phosphorus into benzoxazine via the curing reaction of dopotriol and F‐a. After the curing, the thermal properties of the F‐a/dopotriol copolymers are almost the same as those of neat poly(F‐a), and this implies that we can incorporate the flame‐retardant element phosphorus into the polybenzoxazine without sacrificing any thermal properties. In the third approach, we react dopo with electron‐deficient benzoxazine to incorporate the element phosphorus. After the curing, the glass‐transition temperatures of polybenzoxazines decrease slightly with the content of dopo, mainly because of the smaller crosslinking density of the resultant polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3454–3468, 2006  相似文献   

16.
Insertion of CO2 into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2 and a derivatized oxirane. All the carbonate analogues possess higher glass‐transition temperatures (Tg=32 to ?5 °C) than alkyl acrylates (Tg=10 to ?50 °C), however, the carbonate analogues (Td≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td≈380 °C). The poly(alkyl carbonates) exhibit compositional‐dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2 in a time‐ and pH‐dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.  相似文献   

17.
Novel difunctional chiral and achiral benzoxazine monomers were synthesized from the reaction of bisphenol A with paraformaldehyde and primary amines, including S-(+)-3-methyl-2-butylamine and rac-(±)-3-methyl-2-butylamine, by solventless method. The chemical structures of chiral and achiral benzoxazines were identified by fourier transform infrared, nuclear magnetic resonance (1H NMR and 13C NMR). The curing behavior and non-isothermal curing kinetics of chiral and achiral benzoxazine monomers were investigated by differential scanning calorimeter (DSC). Isoconversional methods based on Friedman and Kissinger–Akahira–Sunose were applied to analyze the curing process of chiral and achiral benzoxazines. The thermal properties of cured polymers were characterized by DSC and thermogravimetry. The results suggested that the optical purity and stereo-configuration for chiral and achiral benzoxazines have definite influence on curing behavior and thermal properties despite the same chemical structure. Chiral benzoxazine displayed typical characteristics of difunctional benzoxazines. Achiral benzoxazine showed distinctly double peaks in DSC exotherms due to the presence of racemic and mesomeric isomers. The thermal properties of achiral polybenzoxazine were slightly higher than those of chiral polybenzoxazine, and were much higher than those of other bisphenol A-C3–C8 linear aliphatic amine-based polybenzoxazines because of tight packing, low free volume, and abundant intramolecular and intermolecular hydrogen bonds in network structure of polymers.  相似文献   

18.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

19.
A series of new polybenzoxazines were synthesized based on diphenols containing (substituted) cyclohexyl moiety and were characterized by FT‐IR, 1H‐NMR, and 13C‐NMR spectroscopy. These new benzoxazine monomers exhibited better processability with lower peak cure temperature and a wide cure controllable window (CCW) as manifested in differential scanning calorimetric analysis. The cure analysis was performed by FT‐IR spectroscopy. Glass transition temperature of new polybenzoxazines varied from 170 to 205°C. The cyclohexyl bridge groups facilitated ring opening, resulting in polymer with improved thermal stability in comparison to bisphenol A‐based benzoxazine as assessed by the various thermal analyses. The water contact angles of polybenzoxazines containing (substituted) cyclohexyl moieties were higher than that of bisphenol A‐based polybenzoxazine, implying their higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The ABCBA pentablock copolymers (p-d -l -PPS) comprising poly(d -lactide) (PDLA: A), poly(l -lactide) (PLLA: B) and poly(propylene succinate) (PPS: C) were successfully synthesized by two-step ring-opening polymerization (ROP) of d - and l -lactide using a dihydroxy-terminated PPS as a macro-initiator. The pentablock copolymers revealed the high stereocomplex (sc) crystallinity, thermal stability and elastomeric property in their solution-cast films. It was found that the Tg was found to be proportional to the PPS content, whereas the Tm was proportional to their average block length. The thermal resistivity of the copolymer films was found to be as high as 202°C owing to their sc formation. The copolymers also showed improved stereocomplexibility compared to the enantiomeric mixtures of triblock copolymers (PLLA-PPS-PLLA and PDLA-PPS-PDLA) having similar PLLA and PDLA chain lengths. These pentablock copolymers can afford thermoplastic elastomers or flexible plastic materials having a 100% bio-based content, showing high heat-resistive property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号