首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes the field emission characteristics of nanoscale magnetic nanomaterial encapsulated multi-walled carbon nanotubes (MWNTs) fabricated over flexible graphitized carbon cloth. Ni/MWNTs, NiFe/MWNTs and NiFeCo/MWNTs have been synthesized by catalytic chemical vapor decomposition of methane over Mischmetal (Mm)-based AB3 (MmNi3, MmFe1.5Ni1.5 and MmFeCoNi) alloy hydride catalysts. Metal-encapsulated MWNTs exhibited superior field emission performance than pure MWNT-based field emitters over the same substrate. The results indicate that a Ni-filled MWNT field emitter is a promising material for practical field emission application with a lowest turn-on field of 0.6 V/μm and a high emission current density of 0.3 mA/cm2 at 0.9 V/μm.  相似文献   

2.
The binary nanomaterials and graphitic carbon based hybrid has been developed as an important porous nanomaterial for fabricating electrode with applications in non-enzymatic (bio) sensors. We report a fast synthesis of bimetal oxide particles of nano-sized manganese ferrite (MnFe2O4) decorated on graphitic carbon nitride (GCN) via a high-intensity ultrasonic irradiation method for C (30 kHz and 70 W/cm2). The nanocomposites were analyzed by powder X-ray diffraction, XPS, EDS, TEM to ascertain the effects of synthesis parameters on structure, and morphology. The MnFe2O4/GCN modified electrode demonstrated superior electrocatalytic activity toward the neurotransmitter (5-hydroxytryptamine) detection with a high peak intensity at +0.21 V. The appealing application of the MnFe2O4/GCN/GCE as neurotransmitter sensors is presented and a possible sensing mechanism is analyzed. The constructed electrochemical sensor for the detection of 5-hydroxytryptamine (STN) showed a wide working range (0.1–522.6 μM), high sensitivity (19.377 μA μM−1 cm−2), and nano-molar detection limit (3.1 nM). Moreover, it is worth noting that the MnFe2O4/GCN not only enhanced activity and also promoted the electron transfer rate towards STN detection. The proposed sensor was analyzed for its real-time applications to the detection of STN in rat brain serum, and human blood serum in good satisfactory results was obtained. The results showed promising reproducibility, repeatability, and high stability for neurotransmitter detection in biological samples.  相似文献   

3.
Si-based materials possess huge potential as an excellent anode material for Li-ion batteries. However, how to realize scalable synthesis of Si-based anode with a long cycling life and high-performance is still a critical challenge. Here a water-in-oil microemulsion process followed by UV illumination, calcination, and hydrothermal method to produce yolk-shell Si@void@C embedded in interconnected 3D porous carbon network architecture using silicon nanoparticles is reported. As a result, the sample Si@void@C/C-2 electrode has achieved a reversible capacity of 1160 mA h g−1 at 0.2 A g−1 after 300 cycles and a stable long cycling life of 480 mA h g−1 at 1 A g−1 after 1000 cycles. A full battery with the synthesized anode shows a capacity of 128 mA h g−1 at 0.2 A g−1 as well as good cycling stability after 1100th cycles. Such excellent electrochemical performance is ascribed to its unique structure, the yolk-shell void space, highly robust carbon shells and interconnected porous carbon nets that can improve the conductivity of the electrode, buffer the volume expansion, and also suppress Si nanoparticles stress variation. This water-in oil system makes it possible for mass production of environmentally friendly synthesis of core–shell structure.  相似文献   

4.
The effect of current density during electrochemical oxidation on the microstructure of solid oxide fuel cell anodes was investigated. Anode-supported cells were subjected to electrochemical oxidation by oxide ions and chemical reduction by H2 gas. Two anodes were electrochemically oxidized by the same quantity of electricity of 15 C using different current densities of 25 mA/cm2 and 250 mA/cm2. When Ni particles were oxidized at 25 mA/cm2, little morphological change occurred in the Ni particles, resulting in only a small change in the microstructure of the anode. On the other hand, when Ni particles were oxidized at 250 mA/cm2, the morphology of the particles changed to a more textured outer surface and the Ni particle seemed to divide into smaller ones. Neither cell showed a decrease in open circuit voltage nor cracks in the electrolyte, resulting in that the microstructure changes observed in the tested cells were caused by electrochemical oxidation and subsequent reduction (redox cycle). Furthermore, this suggests that the differences in the resulting microstructures of the Ni particles were caused by the differences in current density during electrochemical oxidation.  相似文献   

5.
Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.  相似文献   

6.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

7.
Pt3Ni stands as one of the most active electrocatalysts for the oxygen reduction reaction (ORR). The activity varies with the morphology of the nanocrystals with a high activity observed for the octahedral shape where only the high density {111} crystallographic planes are exposed. Herein, the synthesis of 6 nm Pt3Ni octahedral nanocrystals with a Pt enriched shell or cuboctahedral nanocrystals with a Ni enriched shell is described. Interestingly, the cuboctahedral nanocrystals display a six-pointed star/skeleton of platinum, which features a very uncommon atomic distribution. In the synthesis, a decrease in the oxygen partial pressure induces the transition from octahedral to cuboctahedral morphology. The octahedral and cuboctahedral nanocrystals both demonstrate high ORR activity (1.1 mA cm−2Pt and 1.2 A mg−1Pt at 0.9 V vs reversible hydrogen electrode (RHE) are the highest values obtained for PtNi-20 and PtNi-15, respectively). After exposure to oxidative conditions in the acidic electrolyte, the cuboctahedral nanoparticles with a pristine Ni-rich skin show a Pt skin and retain their cuboctahedral morphology.  相似文献   

8.
Nanotip arrays of amorphous carbon with embedded hexagonal diamond nanoparticles were prepared at room temperature for use as excellent field emitters by a unique combination of anodic aluminum oxide (AAO) template and filtered cathodic arc plasma (FCAP) technology. In order to avoid nanopore array formation on the AAO surface, an effective multi-step treatment employing anodization and pore-widening processes alternately was adopted. The nanotips were about 100 nm in width at the bottom and 150 nm in height with density up to 1010 cm−2. Transmission electron microscopy investigation indicates that many nanoparticles with diameters of about 10 nm were embedded in the amorphous carbon matrix, which was proved to be hexagonal diamond phase by Raman spectrum and selected-area electron diffraction. There is no previous literature report on the field emission properties of hexagonal diamond and its preparation at room temperature under high-vacuum condition. The nanotip arrays with hexagonal diamond phase exhibit a low turn-on field of 0.5 V/μm and a threshold field of 3.5 V/μm at 10 mA/cm2. It is believed that the existence of hexagonal diamond phase has improved the field emission properties.  相似文献   

9.
We demonstrate a promising single layer white light-emitting device using a dimeric trimeric phenylenvinylene derivative as emitting layer. The broad electroluminescence emission band is composed of blue component from singlet excited state of individual 2, 5, 2′, 5′-tetra (p-trifluoromethylstyryl)-biphenyl molecule and long-wavelength electromer emission in electroluminescence. Therefore, white-light emission can also be obtained with a typical three-layer structure of ITO/NPB (50 nm)/TFM-TSB (50 nm)/Alq3 (30 nm)/LiF/Al device. The maximum brightness of this device is 809 cd/m2 at 217 mA/cm2 and 13 V, and the maximum luminous efficiency is 1.49 cd/A at 11 mA/cm2 and 8 V.   相似文献   

10.
M.W. Raja  S. Mahanty  R.N. Basu 《Solid State Ionics》2009,180(23-25):1261-1266
LiMn2O4 and LiNi0.5Mn1.5O4 powders have been synthesized by a novel cost-effective carbon exo-templating process. It has been observed that controlled nucleation in the pores of highly surface active carbon produces a distinct effect on the powder morphology and crystallinity. Quantitative X-ray phase analyses show single phase spinel structure having Fd3m symmetry for both samples. Field emission electron microscopy reveals particles of size 0.5–1.0 µm with well defined multi-faceted crystals. Cyclic voltammetry results show well separated distinct redox peaks at 4.05/3.92 and 4.17/4.08 V for LiMn2O4/Li and 4.91/4.61 V for LiNi0.5Mn1.5O4/Li coin cells indicating good crystallinity and reversibility of the cathodes compared to that of pristine LiMn2O4 synthesized by conventional combustion process. The LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells deliver an initial discharge capacity of 110 mA h/g and 122 mA h/g respectively at a current density of 0.05 mA/cm2 and when cycled at 0.2 mA/cm2, the cells maintain 81% and 96% of their initial discharge capacity respectively even after 20 cycles. On the other hand, at the same current density, LiMn2O4 synthesized by conventional combustion process suffers from severe capacity fading (only 37.5% capacity retention after the 25th cycle). The capacity fading rate is found to be very less even at further higher current densities (0.4–0.8 mA/cm2) for both LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells synthesized by the templating process. The present study reveals that high crystallinity along with multi-faceted morphology shows a remarkable enhancement in capacity as well as rate performance of pristine LiMn2O4 and its Ni derivative.  相似文献   

11.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

12.
《Current Applied Physics》2015,15(4):567-570
In this work, lithium-modified silica nanosalt (Li202) is solution-synthesized and used as a gel-forming additive in 1.5 M tetraethylammonium tetrafluoroborate (TEABF4)/acetonitrile (ACN) electrolyte solution for the supercapacitor with activated carbon electrode. The electrochemical properties of the supercapacitor adopting the Li202 (5 wt.%) are investigated using linear sweep voltammetry, cyclic voltammetry, and complex impedance spectroscopy. By the addition of the Li202, the electrochemical stability of the electrolyte is improved over 4.0 V (corresponding to the current density below 0.6 mA cm−2) and higher specific capacitances at the scan rates of 10–500 mV s−1 are obtained. Thus, the Li202 can be considered as a promising electrolyte additive to enhance the supercapacitive properties of activated carbon electrode.  相似文献   

13.
《Solid State Communications》2003,125(3-4):185-188
High-density (∼108/cm2), uniformly aligned silicon nanotip arrays are synthesized by a plasma-assisted hot-filament chemical vapor deposition process using mixed gases composed of hydrogen, nitrogen and methane. The silicon nanotips grow along 〈112〉, and are coated in situ with a ∼3 nm thick amorphous carbon film by increasing the methane concentration in the source gases. In comparison to the uncoated silicon nanotips arrays, the coated tips have enhanced field emission properties with a turn-on field of 1.6 V/μm (for 10 μA/cm2) and threshold field of 3 V/μm (for 10 mA/cm2), suggesting their potential applications for flat panel displays.  相似文献   

14.
Multi-wall carbon nanotubes (MWNTs) have a great commercial potential as electron field emitters, but suffer from fundamental problems such as stability and brightness. By depositing the MWNTs with nano-sized ruthenium dioxide (RuO2) particles, a new high performance emitter has been developed. When compared to MWNTs, the MWNTs impregnated with 1–2 nm sized RuO2 have superior and more efficient electrical characteristics. MWNTs supported by a silicon substrate showed a reduction in the onset voltage from 5.4 to 4 V/μm after RuO2 impregnation. The long-term stability of the impregnated MWNTs is also demonstrated with only a 20% increase in applied voltage required after 700 h operation at 40 mA/cm2.  相似文献   

15.
Rapid technological development requires sustainable, pure, and clean energy systems, such as hydrogen energy. It is difficult to fabricate efficient, highly active, and inexpensive electrocatalysts for the overall water splitting reaction: the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The present research work deals with a simple hydrothermal synthesis route assisted with ultrasound that was used to fabricate a 3D nanoflower-like porous CoMoS4 electrocatalyst. A symmetric electrolyzer cell was fabricated using a CoMoS4 electrode as both the anode and cathode, with a cell voltage of 1.51 V, to obtain a current density of 10 mA/cm2. Low overpotentials were observed for the CoMoS4 electrode (250 mV for OER and 141 mV for HER) at a current density of 10 mA/cm2.  相似文献   

16.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

17.
In this paper we present the effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes (OLEDs). A number of OLED devices have been fabricated with combinations of hole injecting and hole blocking layers of varying thicknesses. Even though hole blocking and hole injection layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc (Copper(II) phthalocyanine) layer, used as hole injection layer and BCP (2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline) used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing is achieved and luminous efficiency and power efficiency were optimized. The maximum luminous efficiency of 3.82 cd/A at a current density of 24.45 mA/cm2 and maximum power efficiency of 2.61 lm/W at a current density of 5.3 mA/cm2 were achieved. We obtained luminance of 5993 cd/m2 when current density was 140 mA/cm2. The EL spectra was obtained for the LEDs and found that it has a peaking at 524 nm of wavelength.  相似文献   

18.
《Current Applied Physics》2015,15(4):452-455
We report on the optimization of the optical and electrical properties of IGZO/Ag/IGZO multilayer films as a function of IGZO thickness. The transmission window slightly widened and shifted toward lower energies with increasing IGZO thickness. The IGZO(39 nm)/Ag(19 nm)/IGZO(39 nm) showed transmittance 88.7% at 520 nm. The optical transmittance spectra were examined by finite-difference time-domain (FDTD) simulations. The carrier concentration decreased from 1.73 × 1022 to 4.99 × 1021 cm−3 with increasing the IGZO thickness, while the charge mobility insignificantly changed from 19.07 to 19.62 cm2/V. The samples had sheet resistances of 4.17–4.39 Ω/sq with increasing IGZO thickness, while the resistivity increased from 1.89 × 10−5 to 6.43 × 10−5 Ω cm. The 39 nm-thick IGZO multilayer sample had a smooth surface with a root mean square roughness of 0.63 nm. The IGZO(39 nm)/Ag(19 nm)/IGZO(39 nm) multilayer showed a Haacke's FOM of 49.94 × 10−3 Ω−1.  相似文献   

19.
李卫民  郭金川  周彬 《光子学报》2014,41(8):972-976
制备了结构为CuPc/缓冲层/C60异质结的有机光伏器件,分别选用三氧化钼和红荧烯为缓冲层,研究了增加缓冲层对器件性能的影响.结果表明,增加三氧化钼和红荧烯缓冲层后器件的开路电压和光电转换效率都得到提高,器件的短路电流密度和填充因子都有所降低.开路电压从没有缓冲层时的0.39 V分别提高到0.58 V、0.55 V,转换效率从0.36%提高到0.44%,短路电流从1.92 mA/cm2分别降低到1.77 mA/cm2、1.81 mA/cm2,填充因子从0.48分别减少到0.43、0.44.进一步研究表明器件的短路电流密度受缓冲层厚度的影响很大,当缓冲层厚度很小时,器件短路电流密度还有所增加,但随着缓冲层厚度的增加,短路电流密度逐渐减小,当缓冲层厚度为10 nm时,器件短路电流密度减少到0.35 mA/cm2.开路电压随着厚度的增加逐渐增加,从1 nm时的0.43 V增加10 nm时0.63 V.根据整数电荷转移模型和界面能级理论解释有机光伏器件开路电压提高以及短路电流密度减少的原因,为有机太阳能电池性能的改善提供了研究方法.  相似文献   

20.
In this paper, a lead-free halide perovskite CsCu2I3 film with high stability was prepared by the anti-solvent assisted crystallization method. Then, we coupled it with Ga2O3 to prepare a corresponding heterojunction deep ultraviolet (UV) photodetector. After testing, we concluded that the photodetector is sensitive to 254 nm UV light. The photodetector has good reproducibility, and has an ultra-high photo-to-dark current ratio (PDCR) of more than 105. In addition, under a bias of 10 V and an illuminated intensity of 200 μW/cm2, the responsivity (R) and specific detectivity (D*) reached 20 mA/W and 107 cm Hz1/2 W−1 (Jones), and the external quantum efficiency (EQE) is 10%. Meanwhile, the prepared photodetector could operate at zero bias, i.e., self-powered operation, along with a photocurrent of about 1 nA under illumination with UV light intensity of 200 μW/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号