首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene oxide (GO) nanosheets were engineered to be assembled into laminar structures having fast and selective transport channels for gas separation. With molecular‐sieving interlayer spaces and straight diffusion pathways, the GO laminates endowed as‐prepared membranes with excellent preferential CO2 permeation performance (CO2 permeability: 100 Barrer, CO2/N2 selectivity: 91) and extraordinary operational stability (>6000 min), which are attractive for implementation of practical CO2 capture.  相似文献   

2.
The effects of humidity on gas permeation were studied for five SAPO-34 membranes with different fractions of permeation through non-SAPO pores. Membranes with high CO2/CH4 separation selectivities (>20) were stable in humidified gases, but degradation was seen for some membranes after months of exposure to the laboratory atmosphere. Once the membranes started to degrade, the rate of degradation appeared to accelerate. The degradation created non-SAPO pores that were larger than the SAPO-34 pores, as indicated by i-C4H10 permeance, CO2/CH4 selectivity, and CO2 flux dependence on pressure. The effect of humidity on gas permeance correlated with these indicators of non-SAPO pores. Adsorbed water appeared to completely block the SAPO pores, but permeation through non-SAPO pores increased with humidity. Therefore, water adsorption can be used to determine membrane quality and the fraction of transport through non-SAPO pores.  相似文献   

3.
Graphene oxide nanoparticles (GO) were firstly functionalized using p-phenylenediamine and then utilized as nanofillers to prepare poly(ether-block-amide) (Pebax®-1657)/poly(vinyl alcohol) (PVA-60000)-based mixed-matrix membranes. The modified GO as well as the fabricated mixed matrix membranes underwent some characterization analyses, including FTIR, TGA, XRD, FESEM, and EDX. The influence of amine-modified nanoparticles content (2, 4, and 6 wt%), and feed pressure on CO2, CH4, and N2 permeabilitis and ideal CO2/CH4 and CO2/N2 selectivities values of the MMMs were investigated. The permeation experiments demonstrated that Pebax/PVA (10 and 15 wt%) blend membranes caused an increase in CO2 permeability owing to the high affinity of polar CO2 molecules to polar PVA segments. Moreover, the incorporation of 6 wt% amine-functionalized GO into the Pebax/PVA (10 wt%) and Pebax/PVA (15 wt%) blend polymer raised the CO2 permeability and CO2/CH4 and CO2/N2 selectivity by nearly 43%, 28%, and 37%, respectively, due to the higher CO2 adsorption capacity of the amine-functionalized GO.  相似文献   

4.
Poly(vinylalcohol) (PVA)/poly(ethyleneimine) (PEI)/poly(ethyleneglycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO2/N2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO2 permeability decreased with an increase in CO2 partial pressure in feed gas, while the N2 permeability remained constant. This result indicated that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO2 to N2 transport showed a maximum. When CO2 is humidified, its permeability through the blend membranes is much higher than that of dry CO2, but the change in permeability due to the presence of humidity is reversible.  相似文献   

5.
An experimental and theoretical analysis to separate CO2 using facilitated transport membranes immobilized with different aqueous single and mixed amine solutions have been performed. The membranes containing monoethanolamine (MEA), diethanolamine (DEA), monoprotonated ethylenediamine (EDAH+) and piperazine (PZ), as well as aqueous blends of PZ with MEA, DEA or EDAH+ were considered. The aqueous solution of PZ showed the highest CO2 permeation rate with respect to other single amine solutions. Therefore blends of PZ with MEA, DEA and EDAH+ increased the permeance of carbon dioxide through mixed amine membranes.  相似文献   

6.
Graphene oxide (GO) is a promising two-dimensional building block for fabricating high-performance gas separation membranes. Whereas the tortuous transport pathway may increase the transport distance and lead to a low gas permeation rate, introducing spacers into GO laminates is an effective strategy to enlarge the interlayer channel for enhanced gas permeance. Herein, we propose to intercalate CO2-philic MIL-101(Cr) metal-organic framework nanocrystals into the GO laminates to construct a 2D/3D hybrid structure for gas separation. The interlayer channels were partially opened up to accelerate gas permeation. Meanwhile, the intrinsic pores of MIL-101 provided additional transport pathways, and the affinity of MIL-101 to CO2 molecules resulted in higher H2/CO2 diffusion selectivity, leading to a simultaneous enhancement in gas permeance and separation selectivity. The MIL-101(Cr)/GO membrane with optimal structures exhibited outstanding and stable mixed-gas separation performance with H2 permeance of 67.5 GPU and H2/CO2 selectivity of 30.3 during the 120-h continuous test, demonstrating its potential in H2 purification application.  相似文献   

7.
Both homogeneous and asymmetric polyethersulfone (PES) membranes were prepared by solvent casting. The sorption and permeation behavior of CO2, O2, and N2 using these two kinds of cast PES membranes and commercially available homogeneous PES film was investigated to extract the pressure dependence of gas permeability and the permselectivity for CO2 relative to N2, and to confirm the validity of the working assumption that a skin layer in an asymmetric membrane can be essentially replaced by a thick homogeneous dense membrane. The pressure dependence of the mean permeability coefficient to CO2 in homogeneous membranes obeys the dual-mode mobility model. The ideal separation factor for CO2 relative to N2 at an upstream pressure of 0.5 MPa attains ca. 40, while the permeability to CO2 is about 2.7 Barrer at the same upstream pressure. The same separation factor in asymmetric membranes amounts to 35. The diffusion behavior for the skin layer in an asymmetric membrane with a thin skin layer can be simulated approximately by that in a homogeneous dense membrane. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
High-purity H2 production accompanied with a precise decarbonization opens an avenue to approach a carbon-neutral society. Metal–organic framework nanosheet membranes provide great opportunities for an accurate and fast H2/CO2 separation, CO2 leakage through the membrane interlayer galleries decided the ultimate separation accuracy. Here we introduce low dose amino side groups into the Zn2(benzimidazolate)4 conformation. Physisorbed CO2 served as interlayer linkers, gently regulated and stabilized the interlayer spacing. These evoked a synergistic effect of CO2 adsorption-assisted molecular sieving and steric hinderance, whilst exquisitely preserving apertures for high-speed H2 transport. The optimized amino membranes set a new record for ultrathin nanosheet membranes in H2/CO2 separation (mixture separation factor: 1158, H2 permeance: 1417 gas permeation unit). This strategy provides an effective way to customize ultrathin nanosheet membranes with desirable molecular sieving ability.  相似文献   

9.
Integrally skinned asymmetric membranes were prepared from poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) using different nonsolvent additives. These nonsolvent additives consisted of branched and linear alcohols ranging from C3 to C10. Permeation data of these membranes were obtained from a constant pressure permeation system for pure gases of CO2, CH4, O2 and N2. An empirical correlation relating the pure gas permeance ratio of CO2/CH4 and the structural components of the nonsolvent additives has been proposed. The membranes were characterized by atomic force microscope (AFM) and intrinsic viscosity measurements. It was observed that there were two types of surface morphologies: merged nodules and discrete nodules. The appearance of the nodules were reflected in the mean roughness data, Ra. It was revealed that membranes with smaller and merged nodules resulted in higher pure gas permeance ratios for O2/N2 and CO2/CH4 with the exception of 3,5,5-trimethyl-1-hexanol and 3-ethyl-2,2-dimethyl-3-pentanol. The microscopic studies showed that the membranes containing discrete nodules resulted in lower pure gas permeance ratios for O2/N2 and CO2/CH4. It was observed that nonsolvent additives that possess a long straight hydrocarbon chain such as 2-ethyl-1-hexanol, 1-octanol and 2-decanol produced the highest pure gas permeance ratios.  相似文献   

10.
The effects of incorporation of heterocyclic moieties into fluorinated poly(ether imide) membranes on their gas transport properties were investigated. Four novel fluorinated poly(ether imide) (PEI) membranes were prepared from four different bis(ether amine)s namely, 4,4-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]biphenyl (BAQP); 1,4-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl] benzene (BATP); 2,6-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]pyridine (BAPy) and 2,5-bis[3′-trifluromethyl-4′(4′′-aminobenzoxy)bezyl]thiophene (BATh), and a fluorinated dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane (6FDA) as a common dianhydride. Gas transport properties of these membranes were measured to investigate the effect of chemical structure on gas permeation and diffusion processes over four different gases (e.g., CH4, N2, O2 and CO2) at different temperatures (e.g., 35, 45 and 55 °C) at an applied pressure of 3.5 bar. It has been found that at 35 °C the permselectivities of BAPy and BATh based polymeric membranes (6.4 and 6.6, respectively) toward O2 relative to N2 are higher in comparison to BAQP and BATP (5.5 and 5.3, respectively) containing PEI membranes. The permeability coefficient of CO2 for BAPy and BATh (51.92 and 45.31, respectively at 35 °C) based PEI membranes were observed to be much higher than BAQP and BATP based membranes (36.61 and 33.51, respectively at 35 °C) with comparable selectivity values of CO2 relative to CH4. All these membranes exhibit higher CO2/CH4 selectivity than those of common glassy polymers e.g., cellulose acetate, polysulfone and polycarbonate. The order of permeability of these gases was found as CO2 > O2 > N2 > CH4. The temperature dependency of permeation and diffusion processes enables to calculate the activation energies of the permeation and diffusion processes for these four different gases through four PEI membranes.  相似文献   

11.
Copolymers of hydrophobic diglycidyl ether of bisphenol A (DGEBA) vinyl ester (VE) and hydrophilic 2‐acrylamido 2‐methyl 1‐propane sulfonic acid (AMPS) were evaluated as proton conducting membranes for fuel cell applications. Membranes were synthesized using free radical copolymerization in the presence of a common solvent for both monomers, dimethyl formamide (DMF), followed by solvent removal by supercritical CO2 to induce porosity. Micrographs revealed pore sizes below 60 nm with porosity proportional to the initial solvent fraction used. Studies on the states of water showed that the presence of this pore volume significantly altered the freezable water fraction at equivalent AMPS concentrations. Comparison of the moles of water per mole of sulfonic acid (λ) between copolymer membranes and AMPS monomer solutions showed that the nonfreezable water (λ|nonfr) was depressed at high AMPS concentrations, suggesting that differences in interatomic distances between sulfonic acid groups might alter λ|nonfr. The highest average through plane conductivity of membranes was determined to be 30 mS/cm and was comparable to that of Nafion®117 (27 mS/cm). The effective proton mobility, μeff, was calculated and suggested to be a parameter used to capture the effects of membrane structure and swelling while acting as a comparison between different membrane types. Fuel cell tests on membranes at low ion exchange capacities were compared to Nafion®117, with suggestions on improvements of copolymer structures for improved performance. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1245–1255, 2010  相似文献   

12.
A new gas/vapor mixture permeation system is described to investigate the effect of organic molecules on oxygen (O2) and carbon dioxide (CO2) transport in barrier materials. Methanol vapor was considered as a flavor simulant mainly because of its conveniently high diffusion coefficient, which makes the experimental time accessible. A highly accurate syringe pump was used to introduce a desired activity level of vapor into gas feed stream. Adsorption of methanol on high energy surfaces is carefully characterized to prevent underestimation of methanol permeability. A special permeation cell was also developed to study the effect of interacting vapors on O2 and CO2 transport in barrier materials. Systematic permeation measurements were conducted for binary and ternary gas/vapor permeation measurements (e.g., MeOH/O2 and O2/CO2/MeOH) to verify the feasibility of our new vapor/gas permeation system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Single gas and mixture permeances of CO2 and CH4 were measured as functions of pressure and temperature through three MFI zeolite membranes that have different fractions of their permeances through non-zeolite pores. The effect of pressure on CO2 permeance, which was different for each membrane, was fit by a modified surface diffusion model. The differences in the pressure behavior of the membranes are attributed to pores with viscous and Knudsen flow. Membranes with the largest permeation through non-zeolite pores have the lowest CO2/CH4 mixture selectivity. The highest CO2/CH4 mixture selectivity is 5.5 at room temperature and decreases with temperature because of a decrease in competitive adsorption. Although increasing pressure at constant pressure drop increases the apparent CO2/CH4 selectivity, the ratio of the CO2 and CH4 fluxes decreases.  相似文献   

14.
Herein we describe the design and the assembly of temperature sensitive polysulfone (PS)/polyacrylonitrile (PAN) blend membranes using supercritical fluid technology. Blended membranes were prepared using the CO2‐assisted phase inversion method, and their pores were coated with two thermoresponsive hydrogels‐poly(N‐isopropylacrylamide) (PNIPAAm) and poly(N,N′‐diethylacrylamide) (PDEAAm). Permeation experiments of bovine serum albumin (BSA) and lysozyme (LYS) solutions were used to evaluate the performance and temperature‐responsive behavior of coated membranes. While membranes coated with PNIPAAm presented similar protein permeation profiles at temperatures below and above its lower critical solution temperature, PDEAAm coating imparted a temperature‐responsive behavior to PS/PAN (90:10) membranes and selective permeation of proteins with different sizes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Membrane and membrane process have been widely considered as one of the best candidates for mitigating CO2 emissions from the combustion or utilization of fossil fuels. Various amine-containing polymers constitute an important class of membranes, where the highly selective CO2 transport is achieved by the facilitated transport mechanism. In this review, the amine–CO2 chemistry is discussed in conjunction with the mechanism of the reaction-mediated CO2 transport. A wide variety of amine-containing polymers are discussed based on two synthesis motifs: (a) polyamines with amino groups covalently bound to the polymer backbone and (b) small molecule amines embedded in a polymer matrix. This review concludes with the remarks on the facilitated transport membranes for post-combustion carbon capture (CO2/N2) and hydrogen purification (CO2/H2).  相似文献   

16.
The purpose of this project was to synthesize fluorinated polyimide (PI) nanocomposite membranes in order to study the gas permeation rates and selectivity of carbon dioxide and methane. PIs were synthesized from 2,2‐bis(3,4‐anhydrodicarboxyphenyl)hexafluoropropane (6F dianhydride, 6FDA) and 4,4′‐diaminodiphenyl ether (oxydianiline, ODA) into which were incorporated nanoparticulate additives as follows: in situ TiO2, both plain and treated with dodecyl sulfate surfactant, and organo‐clay (Cloisite®‐10 Å) at loads of 1, 3, and 5 wt% to the polyamic acid. Polyamic acid films were solvent cast, cured at 200°C then post‐cured at 300°C and measured for permeation data and for thermal properties. Glass transition temperatures ranged from 124 to 140°C for the cured PIs and from 142 to 147°C for the post‐cured materials, the nano‐inclusions having little discernable effect on this property. Thermogravimetric analysis (TGA) data show that the inclusion of Cloisite® or TiO2 caused a small decrease of thermal stability from 555°C to about 532 to 541°C. The inclusion of clay causes a decreased permeation rate while the addition of TiO2 improves the rate and selectivity. Treating the nanofillers with surfactant decreases selectivity and marginally increases rate of permeation of CO2. Post‐curing caused a darkening of the composites, but not the neat PI. This heat treatment also resulted in a significantly decreased permeation rate, but a significantly increased selectivity. The resulting material shows superior gas separation properties to the commercially available PI, Matrimid® produced by Ciba‐Geigy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

18.
The permeation of CO2 and CH4 and their binary mixtures through a DDR membrane has been investigated over a wide range of temperatures and pressures. The synthesized DDR membrane exhibits a high permeance and maintains a very high selectivity for CO2. At a total pressure of 101 kPa, the highest selectivity for CO2 in a 50∶50 feed mixture was found to be over 4000 at 225 K. This is ascribed to the higher adsorption affinity, as well as to the higher mobility for the smaller CO2 molecules in the zeolite, preventing the bypassing of the CH4 through the membrane. An engineering model, based on the generalized Maxwell-Stefan equations, has been used to interpret the transport phenomena in the membrane. The feasibility of DDR membranes as applied to CO2 removal from natural gas or biogas is anticipated.  相似文献   

19.
Poly(ethylene glycol) (PEG)-based membranes have obtained considerable attentions for CO2 separation for their promising CO2 separation performance and excellent thermal/chemical resistance. In this work, a one-pot thiol–ene/epoxy reaction was used to prepare crosslinked PEG-based and PEG/ionic liquids (ILs) blend membranes. Four ILs of the same cation [Bmim]+ with different anions ([BF4], [PF6], [NTf2], and [TCM]) were chosen as the additives. The chemical structure, thermal properties, hydrophilicity, and permeation performance of the resultant membranes were investigated to study the ILs' effects. An increment in CO2 permeability (~34%) was obtained by optimizing monomer ratios and thus crosslinking network structures. Adding ILs into optimized PEG matrix shows distinct influences in CO2 separation performance depending on the anions' types, due to the different CO2 affinities and compatibilities with PEG matrix. Among these ILs, [Bmim][NTf2] was found the most effective in enhancing CO2 transport by simultaneously increasing the solubility and diffusivity of CO2. © 2020 The Authors. Journal of Polymer Science published by Wiley Periodicals LLC. J. Polym. Sci. 2020 , 58, 2575-2585  相似文献   

20.
Various amounts of diethylene glycol bis[4‐(4′‐ethoxybenzoyloxy)benzoate] (DEBEB) were added into a poly(cis‐butadiene) (PB) membrane to improve its gas permeation ability. This type of rubber/liquid crystal (LC) composite membranes showed two obvious characteristics that are different from the gas permeation behavior reported in previous literature: (1) The permeabilities to O2, N2, and CO2 were enhanced at room temperature, for example, the permeabilities for the PB/DEBEB (90/10) membrane were higher above six times than those of PB membrane under the same conditions. It is suggested that the interface microvoids probably existed on pontes between polar crystal domains and nonpolar PB matrix. (2) All relationships between the permeability coefficient (P) and temperature (T) were characterized by N‐shape, that is, there were the peaks and valleys on the PT curves. Furthermore, morphology studies demonstrated that when DEBEB content in the membranes was above 10 wt %, it was spherically dispersed and embedded in the PB matrix in a crystal domain state. Gas permeation characteristics of the composite membranes were appropriately interpreted as together influence results of DEBEB phase transition behavior and the membrane morphology. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1833–1840, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号