首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.  相似文献   

2.
Polymer networks, which are materials composed of many smaller components—referred to as “junctions” and “strands”—connected together via covalent or non‐covalent/supramolecular interactions, are arguably the most versatile, widely studied, broadly used, and important materials known. From the first commercial polymers through the plastics revolution of the 20th century to today, there are almost no aspects of modern life that are not impacted by polymer networks. Nevertheless, there are still many challenges that must be addressed to enable a complete understanding of these materials and facilitate their development for emerging applications ranging from sustainability and energy harvesting/storage to tissue engineering and additive manufacturing. Here, we provide a unifying overview of the fundamentals of polymer network synthesis, structure, and properties, tying together recent trends in the field that are not always associated with classical polymer networks, such as the advent of crystalline “framework” materials. We also highlight recent advances in using molecular design and control of topology to showcase how a deep understanding of structure–property relationships can lead to advanced networks with exceptional properties.  相似文献   

3.
The sequencing of biopolymers such as proteins and DNA is among the most significant scientific achievements of the 20th century. Indeed, modern chemical methods for sequence analysis allow reading and understanding the codes of life. Thus, sequencing methods currently play a major role in applications as diverse as genomics, gene therapy, biotechnology, and data storage. However, in terms of fundamental science, sequencing is not really a question of molecular biology but rather a more general topic in macromolecular chemistry. Broadly speaking, it can be defined as the analysis of comonomer sequences in copolymers. However, relatively different approaches have been used in the past to study monomer sequences in biological and manmade polymers. Yet, these “cultural” differences are slowly fading away with the recent development of synthetic sequence‐controlled polymers. In this context, the aim of this Minireview is to present an overview of the tools that are currently available for sequence analysis in macromolecular science.  相似文献   

4.
This feature article focuses on the recent development of giant molecules,which has emerged at the interface among chemistry,physics,and bio-science.Their molecular designs are inspired by natural polymers like proteins and are modularly constructed from molecular nanoparticle building blocks via sequential "click" chemistry.Most important molecular parameters such as topology,composition,and molecular weight can be precisely controlled.Their hierarchical assembly reveals many features reminiscent of both small molecules and proteins yet unusual for conventional synthetic polymers.These features are summarized and compared along with synthetic polymers and proteins.Specifically,examples are given in each category of giant molecules to illustrate the characteristics of their hierarchical assembly across different length,time and energy scales.The idea of "artificial domain" is presented in analogy to the structural domains in proteins.By doing so,we aim to develop a rational and modular approach toward functional materials.The factors that dominate the materials functions are discussed with respect to the precision and dynamics of the assembly.The complexity of structure-function relationship is acknowledged,which suggests that there is still a long way to go toward the convergence of synthetic polymers and biopolymers.  相似文献   

5.
Thermo-responsive polymers have been widely explored because of their diverse structures and functions in response to temperature stimuli. Great attention has been attracted to exploring and designing such polymers composites, which offer tremendous opportunities to build up a systematic understanding of their structure–function relationships and pave the ways for their extensive applications in electronics, soft robotics, and electrochemical energy storage devices. Here, we review the most recent research of thermal regulation in electrochemical energy storage devices (e.g., batteries, supercapacitors) via thermo-responsive polymers. We summarize how battery components (i.e., electrolytes, separators, electrodes, or current collectors) can be coupled with thermo-responsive polymers based on different operation mechanisms, such as volume expansion, polymerization, phase reversion, and de-doping effects, to effectively prevent catastrophic thermal runaway. Different types of thermo-responsive polymers are evaluated to compare their key features and/or limitations. This review is concluded with perspectives of future design strategies towards more effective thermo-responsive polymers for battery thermal regulation.  相似文献   

6.
Polysaccharides and proteins are abundantly found in nature and are highly recommended for developing eco-friendly materials due to their special properties (biodegradability, biocompatibility, non-toxicity, low cost, etc.). However, they sometimes fail to meet specific requirements due to poor mechanical and physical properties. Poly(vinyl alcohol) (PVA) is one of the promising synthetic polymers with superior properties that can be blended with natural polymers for obtaining novel biomaterials with improved performances. This review addresses recent advance in PVA/polysaccharides and PVA/proteins biocomposites design and fabrication, mainly for the past two decades.  相似文献   

7.
There is growing interest in the design and synthesis of artificial helical polymers and oligomers, in connection with biological importance as well as development of novel chiral materials. Since the discovery of the helical structure of isotactic polypropylene, a significant advancement has been achieved for synthetic polymers and oligomers with a single helical conformation for about half a century. In contrast, the chemistry of double helical counterparts is still premature. This short review highlights the recent advances in the synthesis, structures, and functions of double helical polymers and oligomers, featuring an important role of supramolecular chemistry in the design and synthesis of double helices. Although the artificial double helices reported to date are still limited in number, recent advancement of supramolecular chemistry provides plenty of structural motifs for new designs. Therefore, artificial double helices hold great promise as a new class of compounds. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5195–5207, 2009  相似文献   

8.
Sequence control in polymers, well‐known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence‐defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H‐bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence‐defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen‐bonding motifs, and will thus enable new macromolecules and materials with useful functions.  相似文献   

9.
10.

Background  

Although it is generally agreed that topography is more conserved than sequences, proteins sharing the same fold can have different functions, while there are protein families with low sequence similarity. An alternative method for profile analysis of characteristic conserved positions of the motifs within the 3D structures may be needed for functional annotation of protein sequences. Using the approach of quantitative structure-activity relationships (QSAR), we have proposed a new algorithm for postulating functional mechanisms on the basis of pattern similarity and average of property values of side-chains in segments within sequences. This approach was used to search for functional sites of proteins belonging to the lysozyme and cystatin families.  相似文献   

11.
Discrete molecular soft cages integrate multiple functionalities in one molecule. They express their functions from the confined space in their cavity, functional groups in the cavity interior wall and exterior wall, and the chelating nodes in many chelating cages. Such functional integrity render cage molecules special applications in material engineering. Increasing applications of cage molecules in material design have been reported in recent years. Compared with other cavity-rich molecular structures such as metal-organic framework (MOF) or covalent organic frameworks (COF), discrete soft cages present the unique advantage of material design flexibility, that they can easily composite with nanoparticles or polymers and exist in materials of various forms. We document the development of cage-based materials in recent years and expect to further inspire materials engineering to integrate contribution from the functionality specificity of cage molecules and ultimately promote the development of functional materials and thus human life qualities.  相似文献   

12.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here.  相似文献   

13.
Organically modified cubic polyhedral oligomeric silsesquioxanes (POSS) have attracted increasing attention in the design of novel functional hybrid materials for applications such as porous materials, liquid crystals, semiconductors, high‐temperature lubricants, fuel cells, and lithium batteries. The nanosized POSS moiety can be conveniently modified on the periphery with a variety of functional groups to lead to hybrid materials with desired functions. In addition, suitable mono‐functionalized POSS derivatives can be incorporated into polymers as side chains via various synthetic strategies to offer a wide class of functional polymeric materials with tunable physical properties for targeted applications. In this Focus Review, we aim to summarize the recent developments on the chemistry and applications of POSS‐based molecules and polymers. Moreover, the properties as well as assembly behavior of the POSS‐based functional hybrid materials will be reviewed, and the relationship of the performance of the hybrid materials with the intrinsic nature of the POSS unit will be addressed.  相似文献   

14.
A new approach to materials design is presented, utilizing specific recognition and assembly of proteins at the molecular level. The approach exploits the control over polymer chain microstructure afforded by biosynthesis to produce protein-based materials with precisely defined physical properties. Incorporated into these materials are recognition elements that stringently control the placement and organization of each chain within higher order superstructures. The proteins, designated Recognin A2 through Recognin E2, are recombinant polypeptides designed de novo from both natural consensus sequences and an appreciation of the physical principles governing biological recognition. The synthesis and characterization of the protein recognition elements is briefly described and initial studies on self-assembly-recognition patterns using surface plasmon resonance and circular dichroism are presented. A subset of these materials are programmed to spontaneously assembly into complex, multicomponent structures and represent a first step in a rational approach to nanometer-scale structural design.  相似文献   

15.
蛋白质是一切生命体的物质基础,是生命活动的主要承担者,参与各种生理功能的调节.设计具有特定功能的蛋白质在蛋白质工程、生物医药、材料科学等领域具有重要意义.蛋白质序列设计的目标是设计能够折叠成期望结构并具有相应功能的氨基酸序列,是所有理性蛋白质工程的核心问题,具有极其重要的研究和应用潜力.随着蛋白质序列数据的指数型增长和...  相似文献   

16.
Singlet fission (SF) is a spin–allowed process in which a higher–energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley–Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF–capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.  相似文献   

17.
贻贝粘附蛋白以其对不同基材表面及在水下都具备高强的粘附能力而闻名。根据仿生学原理,通过将贻贝粘附蛋白功能元即邻苯二酚基团与合成高分子相结合制备仿贻贝粘附蛋白聚合物,达到复制重现甚至超越天然贻贝粘附蛋白粘附效力的目的,是目前贻贝仿生领域研究热点之一。本文综述了近年来国内外仿贻贝粘附蛋白聚合物的研究进展。我们按照主链结构的种类进行了分类,对仿贻贝粘附蛋白聚合物材料的发展过程、材料的设计思路以及应用领域进行了系统的归纳总结。通过研究分子结构与仿生材料功能特性之间的相互关系,希望为以后设计合成新型的功能化的贻贝仿生材料提供有益的借鉴和参考。  相似文献   

18.
The structure and activity of proteins is the gold standard for functional polymeric materials. This highlight seeks to calibrate the reader with respect to recent attempts to mimic the various structural and functional traits of proteins using the techniques of modern polymer chemistry. From advances in sequence‐controlled polymers (primary structure), to peptidomimetics, foldamers, single‐chain nanoparticles (secondary and tertiary structure), accessing the various structural aspects of protein chemistry is a vibrant research area. Likewise, the properties and utility of proteins in applications such as catalysis and molecular recognition are being emulated in the laboratory to great effect. Rather than provide an exhaustive review on any one of these topics, this article seeks to highlight the common thread among them, encouraging discussion and collaboration that will result in the next generation of smart materials with advanced structure and function. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 191–206  相似文献   

19.
The study of type III RNases constitutes an important area in molecular biology. It is known that the pac1+ gene encodes a particular RNase III that shares low amino acid similarity with other genes despite having a double-stranded ribonuclease activity. Bioinformatics methods based on sequence alignment may fail when there is a low amino acidic identity percentage between a query sequence and others with similar functions (remote homologues) or a similar sequence is not recorded in the database. Quantitative structure-activity relationships (QSAR) applied to protein sequences may allow an alignment-independent prediction of protein function. These sequences of QSAR-like methods often use 1D sequence numerical parameters as the input to seek sequence-function relationships. However, previous 2D representation of sequences may uncover useful higher-order information. In the work described here we calculated for the first time the spectral moments of a Markov matrix (MMM) associated with a 2D-HP-map of a protein sequence. We used MMMs values to characterize numerically 81 sequences of type III RNases and 133 proteins of a control group. We subsequently developed one MMM-QSAR and one classic hidden Markov model (HMM) based on the same data. The MMM-QSAR showed a discrimination power of RNAses from other proteins of 97.35% without using alignment, which is a result as good as for the known HMM techniques. We also report for the first time the isolation of a new Pac1 protein (DQ647826) from Schizosaccharomyces pombe strain 428-4-1. The MMM-QSAR model predicts the new RNase III with the same accuracy as other classical alignment methods. Experimental assay of this protein confirms the predicted activity. The present results suggest that MMM-QSAR models may be used for protein function annotation avoiding sequence alignment with the same accuracy of classic HMM models.  相似文献   

20.
Hyperbranched polymers were prepared from a variety of mono‐ and difunctional monomers and used in the development of novel UV‐imprint lithography (UV‐IL) resists. The unique physical and chemical properties of these hyperbranched materials significantly increase the range of molecular systems that could be imprinted. Traditional challenges, such as the use of monomers that have low boiling points or the use of insoluble/highly crystalline momomers, are overcome by the preparation of hyperbranched polymers that incorporate these repeat units. In addition, the low viscosity of the hyperbranched macromolecules and the large number of reactive chain ends overcome many difficulties that are traditionally associated with the use of polymeric materials as imprint resists. Hyperbranched polymers containing up to 12 mol % pendant vinyl groups, needed for secondary crosslinking during imprinting, were prepared with a wide range of repeat unit structures and successfully imprinted with features from tens of microns to ∼ 100 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6238–6254, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号