首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ordered mesoporous silica material was synthesized from a low-cost precursor, sugarcane leaf ash, was used as a support matrix for lipase for the production of biodiesel. The mesoporous samples were characterized using Fourier transform infra red spectroscopy. The surface topography and morphology of the mesoporous materials were studied using scanning electron microscope. The pore diameter, pore volume, Brunauer Emmett and Teller surface area of the mesoporous material were determined by N2 gas adsorption technique. Different pore size Santa Barbara Acid-15 (SBA-15) samples were synthesized and their lipase immobilization capacity and specific enzyme activity of immobilization lipase were determined and compared. Lipase from Candida Antarctica immobilized on SBA-15 (C) had shown maximum percentage immobilization and specific enzyme activity. The immobilized lipase mesoporous matrix was used for biodiesel production from crude non-edible Calophyllum inophyllum oil. The percentage yield of fatty acid methyl ester, 97.6 % was obtained under optimized conditions: 100 mg of lipase immobilized on SBA-15, 6:1 methanol to oil molar ratio, the reaction of 2 g C. inophyllum oil with methanol.  相似文献   

2.
An Al-containing mesoporous molecular sieve (Al-MMS) was prepared by hydrolysis of H2SiF6 and Al(NO3)3·9H2O. NH3-TPD results suggest that the acidity of Al-MMS was less than that of dealuminated zeolite. Y. The potential use of mesoporous molecular sieve as a new support material for dearomatization of residue oil of naphtha cracking was described. In case of C9 + and PGO feed, Pt?Pd/Al-MMS showed a higher activity than Pt?Pd/dealuminated zeolite Y catalyst. This is ascribed to its better accessibility of bulky molecules, and much less cracking activity due to mild acidity, indicating high yield of liquid. Thus, Pt?Pd/Al-MMS catalyst can be applied effectively to the hydrogenation of aromatic compounds in the residue oil of a commercial naphtha cracker.  相似文献   

3.
This study reports the usage of molybdovanadophosphoric acid catalyst on amino-functionalized SBA-15(PMoV2/SBA-15-NH2) for the removal of sulfur from model oil (dibenzothiophene dissolved in n-hexane). To increase the tendency for adsorption of heteropoly acids, mesoporous SBA-15 silica was functionalized with amino groups by postsynthesis grafting, using 3-aminopropyltrimethoxy silane as the coupling agent. Immobilization of molybdovanadophosphoric acid on pure SBA-15 (PMoV2/SBA-15) was also studied for comparison and the catalysts were characterized by physicochemical and spectroscopic methods. It was found that the catalysts exhibit high catalytic activities and PMoV2/SBA-15-NH2 is more durable than PMoV2 impregnated on unmodified mesoporous SBA-15 silica. The results may bring about improvement for oxidative desulfurization of transportation fuels.  相似文献   

4.
A novel ordered mesoporous catalyst was prepared from rice husk (MRH catalyst) through condensation–evaporation method in alkaline media. The process used cetyltrimethylammonium bromide (CTAB) as a structure-directing agent (template) and sulfonated biochar obtained from partial rice husk carbonization (SBRH) as precursor. Various parameters such as temperature and CTAB/SBRH mass ratios were investigated to improve the mesoporous structure. The chosen catalyst was based on its degree of order of the mesoporous channels, and its activity was also tested in the methanolysis of linseed oil to methyl esters which was considered as a valuable blending composition for commercial jet fuels. The results showed that the temperature and CTAB/SBRH mass ratio should be of 70 °C and 0.3/1, respectively. The catalyst samples were characterized by many techniques including X-ray diffraction (XRD), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ammonia-temperature programmed desorption (NH3-TPD). The methyl ester composition of the as-synthesized biofuel was determined using gas chromatography supported by mass spectroscopy detector (GC–MS). The results of the characterizations showed that the catalyst possessed superacidic sites (NH3-TPD) caused by –SO3H groups (confirmed by FT-IR analysis) and ordered mesoporous structure (XRD). The mesoporous channel distribution was also observed by TEM images. The methanolysis yield reached 93.5% (calculated through GC–MS analysis) at mild conditions with high purity of methyl ester products strongly proving the catalyst activity and selectivity.  相似文献   

5.
FDU-15-SO3H, a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer, has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture. FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading. It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1. FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid, which simulated the feedstock with a high content of free fatty acids. The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid. This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.  相似文献   

6.
Oxidative desulfurization (ODS) of organic compounds containing sulfur element from a model oil was performed using tungsten oxide catalysts supported on mesoporous silica with cubic Ia3d mesostructure, well-defined mesopores (7.2 nm), high surface area (719 m2/g), and three-dimensional pore network (WO x /KIT-6). The prepared WO x /KIT-6 catalysts (5–20 wt% WO x ) were characterized by X-ray diffraction analysis, N2 sorption measurements, electron microscopy, H2-temperature programmed reduction, Raman spectroscopy, and thermogravimetric analysis. Among the mesoporous catalysts, 10 wt% WO x /KIT-6 exhibited the best catalytic performance. Sulfur-containing organic compounds, such as dibenzothiophene, 4,6-dimethyldibenzothiophene, and benzothiophene, were completely (100 %) removed from the model oil over 10 wt% WO x /KIT-6 catalyst in 2 h. In addition, the catalyst could be reused several times with only slight decrease in catalytic activity.  相似文献   

7.
Highly ordered mesoporous NiMoO4material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4with the coexistence of α-NiMoO4and β-NiMoO4showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoO4was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogenation of propane in comparison with bulk NiMoO4.  相似文献   

8.
The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild-temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.  相似文献   

9.
In this study, mesoporous TiO2 microspheres were synthesized by simple hydrothermal reaction, and successfully developed for phosphopeptides enrichment from both standard protein digestion and real biological sample such as rat brain tissue extract. The mesoporous TiO2 microspheres (the diameter size of about 1.0 μm) obtained by simple hydrothermal method were found to have a specific surface area of 84.98 m2/g, which is much larger than smooth TiO2 microspheres with same size. The surface area of mesoporous TiO2 microspheres is almost two times of commercial TiO2 nanoparticle (a diameter of 90 nm). Using standard proteins digestion and real biological samples, the superior selectivity and capacity of mesoporous TiO2 microspheres for the enrichment of phosphorylated peptides than that of commercial TiO2 nanoparticles and TiO2 microspheres was also observed. It has been demonstrated that mesoporous TiO2 microspheres have powerful potential for selective enrichment of phosphorylated peptides. Moreover, the preparation of the mesoporous TiO2 microspheres obtained by the hydrothermal reaction is easy, simple and low-cost. These mesoporous TiO2 microspheres with the ability of large scale synthesis can widely be applied for phosphorylated proteomic research.  相似文献   

10.
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration.  相似文献   

11.
Highly ordered mesoporous cobalt-copper composite oxides were prepared by the nanocasting method with various Co and Cu ratios. The catalysts obtained were characterized by X-ray diffraction, N2 adsorption–desorption, H2-temperature programmed reduction, CO-temperature programmed desorption and X-ray photoelectron spectroscopy. All of the catalysts had uniform mesopores and high surface areas. The distinct catalytic properties of these well-characterized mesoporous materials were demonstrated for preferential CO oxidation. It is found that the mesoporous cobalt-copper composite oxides, exhibited the higher catalytic activity for CO conversion and selectivity compared with the mesoporous Co3O4 and mesoporous CuO. Among these catalysts the mesoporous cobalt-copper catalyst with Co:Cu molar ratio of 70:30, shows the best catalytic activity and the broadest operating temperature “window” for the high CO conversion in the range of 125–200oC. The higher catalytic activity was attributed to the higher CO adsorption and oxygen vacancies.  相似文献   

12.
《Electroanalysis》2018,30(9):2121-2130
Highly crystallized mesoporous ZrO2 nanomaterials were synthesized by solvent evaporation induced self‐assembly approach. Ordered mesoporous ZrO2 nanomaterials were characterized by TEM, SEM, BET, XRD and UV‐Vis spectroscopy. The obtained nanomaterials exhibit the close‐packing mesopores with average pore size of 7 nm and a highly crystallized framework with tetragonal phase. A non‐enzyme electrochemical sensor based on ordered mesoporous ZrO2 is established for selective detection of methyl parathion (MP). The online extraction of MP is firstly achieved by ZrO2 modified electrode at open‐circuit potential for 5 min., and the sensitive detection of MP is performed by differential pulse voltammetry (DPV) method. By comparison, DPV responses of mesoporous ZrO2 are 40 times and 25 times larger than that of mesoporous silica and mesoporous carbon with the similar pore structure, implying the specific affinity advantage of zirconia to phosphoric group. The quantitative analysis result shows that the voltammetric currents are linear with concentrations of MP ranging from 1 ng/ml to 2 μg/ml with a detection limit of 0.53 ng/ml. The sensor also exhibits good stability and high selectivity against interfering species. The excellent analytical performances are owed to the accessible and uniform mesoporous structures, highly crystallized frameworks of ZrO2 and its specific affinity to phosphate groups.  相似文献   

13.
陈志坚  李晓红  李灿 《催化学报》2011,32(1):155-161
以介孔材料SBA-15、经或未经Al2O3修饰的具有三维立方孔道结构的SiO2为载体,制备了负载型Pt催化剂,并用于催化α-酮酸酯底物2-氧代-4-苯基-丁酸乙酯(EOPB)和丙酮酸乙酯(Etpy)的不对称氢化反应中.结果表明,当SBA-15孔径由6.2,7.6和9.2nm依次增加时,EOPB不对称氢化的活性和手性选择...  相似文献   

14.
Nitrogen and sulfur co-doped mesoporous TiO2 thin films were fabricated using thiourea as a doping resource by the combination of the sol–gel and evaporation-induced self-assembly (EISA) processes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and UV–vis spectra were performed to characterize the as-synthesized mesoporous TiO2 materials. The XPS result shows that O–Ti–N and O–Ti–S bonds in the (S, N)-codoped mesoporous TiO2 were formed. The resultant mesoporous (S, N)-codoped TiO2 exhibited anatase framework with a high porosity and a narrow pore distribution. After being illuminated for 3 h, methyl orange (MO) could be degraded completely by the co-doped sample under the ultraviolet irradiation, whereas mesoporous TiO2 film without doping could only degrade 60% MO. After being illuminated by visible light, the water contact angles of the mesoporous co-doped TiO2 samples decreased slightly, but the pure TiO2 mesoporous film exhibited no change in the hydrophilicity.  相似文献   

15.
Fe3+ doped mesoporous TiO2 with ordered mesoporous structure were successfully prepared by the solvent evaporation-induced self-assembly process using P123 as soft template. The properties and structure of Fe3+ doped mesoporous TiO2 were characterized by means of XRD, EPR, BET, TEM, and UV–vis absorption spectra. The characteristic results clearly show that the amount of Fe3+ dopant affects the mesoporous structure as well as the visible light absorption of the catalysts. The photocatalytic activity of the prepared mesoporous TiO2 was evaluated from an analysis of the photodegradation of methyl orange under visible light irradiation. The results indicate that the sample of 0.50%Fe–MTiO2 exhibits the highest visible light photocatalytic activity compared with other catalysts.  相似文献   

16.
We report phosphatization is a promising method to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. The resulting phosphated mesoporous TiO2 possessed higher reversible capacity and better cycling stability than the pure mesoporous TiO2. When cycled at 30 mA/g between 3.0 and 1.0 V, the initial capacity of phosphate mesoporous TiO2 was 249 mA h/g, significantly higher than that of pure mesoporous TiO2 (204 mA h/g). After 40 cycles, the capacity retention ratio of phosphate mesoporous TiO2 reached 83.7%, while pure mesoporous TiO2 had merely a capacity retention ratio of 62.3%. We believe that this phosphatization process could be used to enhance the electrochemical performance of other metal oxides for lithium ion batteries.  相似文献   

17.
Recently, extensive works have been devoted to the morphology control of mesoporous materials with respect to their use in various applications. In this paper, we used two kinds of mesoporous silica, SBA-15 rods and spheres as hard templates to synthesize morphology-controllable mesoporous metal oxides. By carefully controlling the loading of metal precursors in the mesopores of the hard template, mesoporous Co3O4 and CeO2 with different morphologies, such as micrometer-sized rod, hollow sphere, saucer-like sphere, and solid sphere were conveniently obtained. The structural properties of these materials were characterized by XRD, BET, SEM and TEM. In addition, it is found that the differences observed in the textural properties of the two mesoporous metal oxides nanocasted from the same template can be attributed to the properties of metal precursors and the interaction between metal oxide and SiO2. Thus-obtained mesoporous metal oxides with such special morphologies may have a potential application in the field of environmental catalytic oxidation.  相似文献   

18.
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes) making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_3)_2·6 H_2 O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_3 O_4 has been fabricated based on as-prepared ultra-small Co_3 O_4 nanocrystals(ca.3 nm) and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_3 O_4 exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt% Co_3 O_4 embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.  相似文献   

19.
Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle‐assembly method. A triblock copolymer, poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.  相似文献   

20.
The development of solid strong base catalysts utilizable in green but acidic medium of scCO2 is reviewed. The strong base sites on mesoporous alumina and sulfated mesoporous alumina that had been generated by severe treatment at 773 K under vacuum (10?4 Torr) were not neutralized by the compressed Lewis acidic molecules of CO2, promoting a representative strong base-catalyzed reaction of the Tishchenko reaction as well as a typical base-catalyzed reaction of the Knoevenagel reaction in scCO2. Infrared spectroscopy of the adsorbed pyrrole, temperature-programmed desorption of CO2, and the poisoning by a very weak Brönsted acid of methanol have revealed that the average strengths of the base sites on mesoporous alumina and sulfated mesoporous alumina are weaker than that on conventional γ-alumina like JRC-ALO-4, but that they have a small number of strong base sites which function even in scCO2 medium. It was found that the addition of a slight amount of THF cosolvent into scCO2 remarkably accelerates the Tishchenko reaction over sulfated mesoporous alumina; the reaction rate in the scCO2–THF medium was 1.5-fold and 2-fold faster than those in ordinary organic solvents such as benzene and THF and that in pure scCO2, respectively. The unique structures of mesoporous alumina and sulfated mesoporous alumina have been fully characterized by N2 adsorption–desorption measurements and XRD analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号