共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The random phase approximation has been used to extend the Leibler theory for the stability limit of a homogeneous melt of A–B diblock copolymers to examine the onset of microphase and macrophase separation in a variety of ABC block copolymer systems. The stability limit is located by the divergence of the collective structure factor of the melt. We introduce and analyze three models for ABC block copolymers: linear triblocks, random comb copolymers where a fixed number of A and B teeth are placed randomly along a C backbone, and statistical comb copolymers, with A or B teeth spaced regularly, but with sequences constructed using a two parameter Markov process. We compute order-disorder stability boundaries for the segregation strength parameter χABN at threshold as a function of χACN, χBCN, composition, and other model parameters, and compare the results for the three different architectural models. An interesting “reentrant order-disorder transition” is located in several model phase diagrams, and is associated with a peculiar situation in which more incompatibility causes less segregation. In the case of statistical combs, macrophase separation into two liquid phases can be favored over microphase separation. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 849–864, 1997 相似文献
3.
Gila E. Stein Nikhila Mahadevapuram Indranil Mitra 《Journal of polymer science. Part A, Polymer chemistry》2015,53(2):96-102
Over the past 15 years, block copolymer lithography has emerged as its own research field within the broader block copolymer and polymer thin film communities. This distinction is associated with the unique requirements set by the semiconductor device industry, such as low-defect densities, precise feature registration, and complex pattern layouts. To achieve perfection in block copolymer lithography, the surface and substrate interactions must be carefully tuned to control domain ordering in three dimensions. This perspective discusses recent modeling efforts that underline the challenges of predicting interfacial interactions and the resulting block copolymer structures. We emphasize studies that facilitate the design and interpretation of experiments, including materials selection, guiding pattern geometry, and selecting tools for three-dimensional metrology. Finally, we propose that translation of block copolymer lithography to semiconductor manufacturing will require integrated experimental and modeling efforts to interrogate the vast parameter space that controls both lateral and out-of-plane ordering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 96–102 相似文献
4.
Robert Vestberg Ashley M. Piekarski Eric D. Pressly Kim Y. Van Berkel Michael Malkoch Jeffrey Gerbac Nobuhiko Ueno Craig J. Hawker 《Journal of polymer science. Part A, Polymer chemistry》2009,47(5):1237-1258
A modular approach to the synthesis of a library of hybrid dendritic‐linear copolymers was developed based on RAFT polymerization from monodisperse dendritic macroRAFT agents. By accurately controlling the molecular weight of the linear block, generation number of the dendrimer and the nature of the dendritic chains ends, the performance of these hybrid block copolymers as dispersing agents was optimized for a range of nanoparticles. For titanium dioxide nanoparticles, dispersion in a poly(methyl methacrylate) matrix was maximized with a second generation dendrimer containing four carboxylic acid end groups, and the quality of dispersion was observed to be superior to commercial dispersing agents for TiO2. This approach also allowed novel hybrid dendritic‐linear dispersing agents to be prepared for the dispersion of Au and CdSe nanoparticles based on disulphide and phosphine oxide end groups, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1237–1258, 2009 相似文献
5.
Ross A. Wylie Michael D. Dimitriou Helen Tran Richard Hoogenboom Ulrich S. Schubert Craig J. Hawker Luis M. Campos Luke A. Connal 《Journal of polymer science. Part A, Polymer chemistry》2016,54(6):750-757
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757 相似文献
6.
Mikael Trollss Craig J. Hawker Jules F. Remenar James L. Hedrick Mats Johansson Henrik Ihre Anders Hult 《Journal of polymer science. Part A, Polymer chemistry》1998,36(15):2793-2798
Living ring opening polymerization of ε-caprolactone initiated from the numerous chain-end hydroxymethyl groups of the analogous dendrimeric and hyperbranched polyesters derived from 2,2-bis(hydroxymethyl) propionic acid is described. By controlling the size of the dendritic macromolecule and the molar ratio of ε-caprolactone, a variety of highly branched radial block copolymers are obtained. Comparison of the results obtained for the dendrimeric and hyperbranched initiators demonstrates that the reactivity of the chain-end hydroxymethyl groups in the dendrimer are significantly greater than in the isomeric hyperbranched case. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2793–2798, 1998 相似文献
7.
Nikhila Mahadevapuram Indranil Mitra Alona Bozhchenko Joseph Strzalka Gila E. Stein 《Journal of polymer science. Part A, Polymer chemistry》2016,54(2):339-352
We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L0 = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L0 − 2.5L0) and brush grafting density (Σ = 0.2–0.6 nm−2) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order at the top of the film (quantified through calculation of orientational correlation lengths) improved with tn, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm−2. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. Strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 339–352 相似文献
8.
9.
A convenient new process to make silicone/organic block and graft copolymers has been recently demonstrated. This dual copolymerization process combines conventional condensation polymerization of the siloxane segments with free radical polymerization of the organic vinyl polymer segments. The copolymerization process is relatively simple and economical compared with other copolymerization techniques as it uses commonly available starting materials and available process equipment. Silicone segments containing alkene side chains or end-groups are prepared in the usual way by polycondensation using an acid or base catalyst. The double bonds of the alkene groups are oxidized to carbonyls which are then used to initiate vinyl monomer polymerization and link the siloxane with the vinyl segments. This initiation step is based on a redox system of copper(II) salts which generates free radicals on the alpha carbons next to the carbonyl groups. This copolymerization process is relatively fast and proceeds at high yields. 相似文献
10.
Ashish K. Khandpur Christopher W. Macosko Frank S. Bates 《Journal of Polymer Science.Polymer Physics》1995,33(2):247-252
Contrast for transmission electron microscopy (TEM) of microphase-separated saturated hydrocarbon diblock copolymers has been obtained using ruthenium tetroxide (RuO4). This technique exploits differences in the rate of transport of the oxidizing stain in rubbery amorphous versus semicrystalline, or glassy, microdomains. Rapid quenching from above the melting (Tm), or glass transition (Tg) temperature is shown to preserve the equilibrium melt morphology in poly(ethylene)-poly(ethyl-ethylene) (PE-PEE), poly(ethylene)-poly(ethylene-propylene) (PE-PEP), and poly(vinylcyclohexane)-poly(ethyl-ethylene) (PVCH-PEE) diblock copolymers; PE melts at 108°C, PVCH is glassy up to about 140°C, while PEE and PEP remain rubbery down to approximately-20°C and ?56°C, respectively. Treatment of ultrathin sections of the quenched specimens with RuO4 vapor led to welldefined TEM images, that revealed microdomain type and order. These results are consistent with SANS data taken under equilibrium conditions. © 1995 John Wiley & Sons, Inc. 相似文献
11.
Hasan A. Al‐Muallem Daniel M. Knauss 《Journal of polymer science. Part A, Polymer chemistry》2001,39(1):152-161
Hybrid dendritic‐linear block copolymers were made in one‐pot by convergent living anionic polymerization. Dendritic polystyrene macroinitiators were synthesized by slowly adding a mixture of either vinylbenzyl chloride (VBC) or 4‐(chlorodimethylsilyl)styrene (CDMSS) and styrene (1 : 10 molar ratio of coupling agent to styrene) to a solution of living polystyryllithium. The addition was ceased prior to the addition of a stoichiometric amount of coupling agent to retain a living chain end. To the living dendritically branched polystyrene was then added either styrene or isoprene to polymerize a linear block from the dendritic polystyrene. The resulting copolymers were characterized by gel permeation chromatography coupled with multiangle laser light scattering (GPC‐MALLS), which clearly demonstrated the formation of diblock copolymers. The diblock copolymers were further characterized by 1H NMR, which showed the presence of the two blocks in the case of dendritic polystyrene‐block‐linear polyisoprene. The measurement of intrinsic viscosity showed that the dilute solution properties of the block copolymers are greatly influenced by the dendritic portion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 152–161, 2001 相似文献
12.
Managing polymer surface structure using surface active block copolymers in block copolymer mixtures
A. Hexemer E. Sivaniah E. J. Kramer M. Xiang X. Li Daniel A. Fischer C. K. Ober 《Journal of Polymer Science.Polymer Physics》2004,42(3):411-420
Surface coatings were prepared from semifluorinated monodendron surface‐active block copolymers (SABC) and a thermoplastic elastomer (TPE) [poly(styrene‐b‐ethylene butylene‐b‐styrene)] by either spin‐casting a bilayer structure or by blending. The surface of these coatings was characterized by contact angle measurements, scanning force microscopy (SFM) and near‐edge X‐ray absorption fine structure (NEXAFS) methods. Both bilayers and blends resulted in very low energy surfaces under the right processing conditions and the liquid crystallinity of the semifluorinated monodendrons gave rise to temporally stable, non‐reconstructing surfaces in water. However for small thicknesses of the SABC top layer or for low SABC content blends, SFM shows islands of the fluorinated block of the SABC and incomplete surface coverage of the TPE, an observation confirmed by NEXAFS analysis. Very high water contact angles were produced by even modest amounts of SABC in either case but to achieve low contact angle hysteresis, it was necessary to produce uniform surface coverage by the SABC. Such uniform coverage can be accomplished by spin casting a top layer of SABC as thin as 60 nm in the bilayer case but at least 10 wt% SABC in TPE combined with drop casting of a hot solutions is needed for the blends to achieve equivalent surface structure and properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 411–420, 2004 相似文献
13.
Lavignac N Lazenby M Foka P Malgesini B Verpilio I Ferruti P Duncan R 《Macromolecular bioscience》2004,4(10):922-929
The poly(amidoamine)s (PAAs) ISA 1 and ISA 23 display pH-dependent conformational change and pH-dependent membrane perturbation. These properties confer potential for use as endosomolytic polymers for intracytoplasmic delivery of toxins and genes. Both polymers are relatively non-toxic, and moreover ISA 23 has the beneficial property in vivo, of being non hepatotropic when administered intravenously. Although ISA 23 and ISA 1 demonstrate ability to transfect cells, ISA 1 is also able to promote intracellular delivery of non-permeant toxins. The aim of this study was to synthesise random and block copolymers of ISA 1 and ISA 23 and investigate whether these second generation hybrids would allow optimisation of PAA biological characteristics. Random and block copolymers of ISA 1 and ISA 23 were synthesised by hydrogen transfer polyaddition to generate a library of PAAs with an ISA 23:ISA 1 molar ratios of 2:1 to 4:1. The resultant polymers have a pI slightly below 7.4 and a M(w) of 19,900-49,000 g/mol and a M(n) of 13,100-24,100 g/mol. Whereas none of the random or block copolymers were haemolytic at pH 7.4 all demonstrated pH-dependent membrane activity. At pH 5.5 they caused 50-60% haemoglobin (Hb) release over 1 h. This was slightly less than that seen for ISA 23 (80% Hb release). None of the copolymers were cytotoxic against B16F10 cells during a 72 h incubation (IC(50) > 2 mg/ml; MTT assay). The ability of the random and block copolymer PAAs to deliver the toxin gelonin was also examined, but only ISA 1 and the block copolymer B2 (ISA 23:ISA 1 at a 2:1 molar ratio) were able to promote intracellular delivery, as measured by cytotoxic activity. It would be interesting to study the body distribution of B2 and determine whether this toxin-delivering PAA is able to escape liver capture. 相似文献
14.
Md Anisur Rahman Yujin Cha Liang Yuan Parasmani Pageni Tianyu Zhu Moumita Sharmin Jui Chuanbing Tang 《Journal of polymer science. Part A, Polymer chemistry》2020,58(1):77-83
Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly(2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro-CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core-forming PHPMA had a strong influence on the size of nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 77–83 相似文献
15.
Nikhila Mahadevapuram Joseph Strzalka Gila E. Stein 《Journal of polymer science. Part A, Polymer chemistry》2013,51(7):602-610
Thin films of lamellar and cylindrical block copolymers are popular systems for low-cost nanolithography. To be useful as nanoscale templates, the lamellae or cylinders must be oriented perpendicular to the substrate. Domain orientations are usually characterized by microscopy measurements of the film surface, but these techniques cannot detect tilted, bent, or tortuous domains in the film interior. We report a simple method to quantify out-of-plane disorder in thin films of block copolymers based on a variant of grazing-incidence small angle X-ray scattering (GI-SAXS). A typical GI-SAXS experiment illuminates the center of a substrate-supported film at a grazing angle of incidence (near the film/substrate critical angle), and the strong reflected signal is interpreted with the distorted-wave Born approximation. In a new approach, the beam footprint is moved to the far edge of the sample, allowing the acquisition of a transmission pattern. The grazing-incidence transmission data are interpreted with the simple Born approximation, and out-of-plane defects are quantified through analysis of crystal truncation rods and partial Debye-Scherrer rings. Significantly, this study demonstrates that grazing-incidence transmission small angle X-ray scattering can detect and quantify the buried defect structure in thin films of block copolymers. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
16.
Jennifer M. Dean Robert B. Grubbs Walid Saad Robert F. Cook Frank S. Bates 《Journal of Polymer Science.Polymer Physics》2003,41(20):2444-2456
Block copolymers with and without reactive functionalities can improve fracture resistance in brittle epoxies even when added in relatively small amounts (<5 wt %). At certain compositions, amphiphilic block copolymers spontaneously self‐assemble into vesicles, spherical micelles, or wormlike micelles in thermoset resins, and these morphologies are retained with the full curing of the resins. The addition of such block copolymers leaves the glass‐transition temperature of these blends relatively unchanged, whereas the fracture resistance increases up to a factor of 3.5 for the vesicle‐modified blends. For epoxies modified with block copolymers self‐assembled into a spherical geometry (vesicles or spherical micelles), the fracture resistance scales with the ratio of the interparticle distance to the average vesicle (or spherical micelle) diameter (Di/Dp) and increases as this quantity is reduced. Greater adhesion between the vesicle and epoxy resin improves the fracture resistance only at higher values of Di/Dp, at which the materials are more brittle. Debonding and subsequent matrix plastic deformation are identified as the toughening mechanisms in these blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2444–2456, 2003 相似文献
17.
Diblock copolymers of poly(styrene) and poly(ethylene oxide) were prepared utilizing a bisterpyridine ruthenium complex as non-covalent interaction for the connection of the two blocks. Apart from the synthesis and characterization of four metallo-supramolecular block copolymers, first studies on the thermal properties of the block copolymers have been performed. A complex crystallization behavior was observed and is described in a qualitative fashion. The influence of the metal complex on the thermal stability of the metallo-supramolecular block copolymers remains a question for further investigation. 相似文献
18.
Aleksandra Porjazoska Philip Dimitrov Ivaylo Dimitrov Maja Cvetkovska Christo B. Tsvetanov 《Macromolecular Symposia》2004,210(1):427-436
Tri- and pentablock amphiphilic copolymers containing hydrophobic poly(D,L-lactide) block(s) and hydrophilic polyethers were synthesized in order to obtain new precursor architectures suitable for drug delivery systems. Polyglycidol-6-poly(ethylene oxide)-b-poly(D,L-lactide) possess high hydroxyl functionality provided by the linear polyglycidol block. Thus very stable hydroxyl functionalized micelles in aqueous media were obtained. On the other hand poly(D,L-lactide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(D,L-lactide) form temperature sensitive aggregates. The copolymers obtained were analyzed by SEC and NMR, and their aqueous solution properties were followed by cloud point measurements and determination of critical micellization temperature. TEM was used for particles visualization. 相似文献
19.
Hongqi Xiang Kyusoon Shin Taehyung Kim Sungin Moon T. J. Mccarthy T. P. Russell 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):3377-3383
In the bulk, at equilibrium, diblock copolymers microphase separated into nanoscopic morphologies ranging from body-centered cubic arrays of spheres to hexagonally packed cylinders to alternating lamellae, depending on the volume fraction of the components. However, when the block copolymers are forced into cylindrical pores, where the diameter of the pores are only several repeat periods of the copolymer morphology or less, then commensurability of the copolymer period and the pore diameter can impose a frustration on the microdomain morphology. In addition, due to the small pore diameter, a curvature is forced on the microdomain morphology. In combination with interfacial interactions between the blocks of the copolymer and the pore walls, the preferential segregation of one component to the walls, spatial confinement and forced curvature are shown to induce transitions in the fundamental morphology of the copolymers seen in the bulk. Lamellar morphologies transformed into torus-type morphologies, cylinders are forced into helices, and body-centered cubic arrays of spheres are force into helical arrays of spheres due to these restraints. The novel morphologies, not accesssible in the bulk, open a large array of nanoscopic structures that can be used as templates and scaffolds for the fabrication of inorganic nanostructured materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3377–3383, 2005 相似文献
20.
The new macroazoinitiators containing poly (propylene glycol), (PPG), with molecular weight 400 and 2000, having hydrophilic character, were synthesized and polymerized with styrene to prepare PS-b-PPG block copolymers. Cast films and e-spun films were prepared and contact angles of these films with water drop were measured to examine hydrophilic/hydrophobic behavior of the copolymers. Each e-spun film with average fiber diameters from 0.25 to 2.20 μm was prepared in N,N-dimethylformamide (DMF) under controlled electrospinning process parameters such as polymer concentration, applied voltage and tip-to-collector distance. Scanning electron microscope (SEM) images of the electrospun films were taken to determine the fiber diameters. Surface compositions of the block copolymers were also determined by using an electron spectrometer with Mg Kα X-rays. NMR, and FT-IR spectroscopic, and GPC measurements were employed to characterize and determine the PPG contents (6-43%). From the results, electrospinning process increased the hydrophilic properties of the block copolymers obtained, compared their cast film forms. Our results suggest that these polymers are favorable in biological applications in cases where high ratio of the surface to volume and hydrophilicity are required simultaneously. Both chemical structure and topology of the films are important in wetting and hydrophobicity. 相似文献