首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To realize polymer electrolytes with high ionic conductivity, we exploited the high ionic conductivity of an ionic liquid. In situ free radical polymerization of compatible vinyl monomers in a room temperature ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethane sulfonyl)imide (EMITFSI), afforded a novel series of polymer electrolytes. Polymer gels obtained by the polymerization of methyl methacrylate (MMA) in EMITFSI in the presence of a small amount of a cross-linker gave self-standing, flexible, and transparent films. The glass transition temperatures of the gels, which we named "ion gels", decreased with increasing mole fraction of EMITFSI and behaved as a completely compatible binary system of poly(methyl methacrylate) (PMMA) and EMITFSI. The temperature dependence of the ionic conductivity of the ion gels followed the Vogel-Tamman-Fulcher (VTF) equation, and the ionic conductivity at ambient temperature reached a value close to 10(-2) S cm(-1). Similarly to the behavior of the ionic liquid, the cation in the ion gels diffused faster than the anion. The number of carrier ions, calculated from the Nernst-Einstein equation, was found to increase for an ion gel from the corresponding value for the ionic liquid itself. The cation transference number increased with decreasing EMITFSI concentration due to interaction between the PMMA matrix and the TFSI(-) anion, which prohibited the formation of ion clusters or associates, as was the case for the ionic liquid itself.  相似文献   

2.
We report a new way of developing ion gels through the self-assembly of a triblock copolymer in a room-temperature ionic liquid. Transparent ion gels were achieved by gelation of a poly(styrene-block-ethylene oxide-block-styrene) (SOS) triblock copolymer in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) with as low as 5 wt % SOS triblock copolymer. The gelation behavior, ionic conductivity, rheological properties, and microstructure of the ion gels were investigated. The ionic conductivity of the ion gels is only modestly affected by the triblock copolymer network. Its temperature dependence nearly tracks that of the bulk ionic liquid viscosity. The ion gels are thermally stable up to at least 100 degrees C and possess significant mechanical strength. The results presented here suggest that triblock copolymer gelation is a promising way to develop highly conductive ion gels and provides many advantages in terms of variety and processing.  相似文献   

3.
Our group has previously reported on successful biofunctionalization of poly(ethylene glycol diacrylate) (PEGDA) gels using chondroitin sulfate (CS) and improving moduli of methacrylated‐CS (MCS) gels using short PEGDA comonomers. Here, we focused on understanding the composition‐property relationship of MCS‐PEGDA copolymers. By changing concentration, composition, and medium's ionic strength the gels were modified to show a diverse range of properties. Photopolymerized copolymers with >4:1 ratio of one component had compressive moduli of up to 24 times higher and up to 17 times lower swelling degree (q) than those of MCS alone. The increased moduli and lowered q were consistent with the hypothesis that PEGDA improves kinetic chain growth by overcoming the steric hindrances of the macromer. The swelling and moduli of the gels were tuned by changing the ratio of the comonomers. The swelling and moduli of the gels were lowered with presence of salt in solution while the fracture strain increased. These changes were hypothesized to be the result of transition of CS chain conformation from highly extended and non‐Gaussian to less extended and Gaussian distribution. The complete understanding of MCS‐PEGDA composition–property relationship provides a general strategy to tune the moduli or q of polysaccharide‐based hydrogels while avoiding undesirable phase separation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1070–1079  相似文献   

4.
We have synthesized liquid crystalline polymers containing an imidazolium salt moiety and a mesogenic group by the in situ photopolymerization of a liquid crystalline vinylimidazole monomer in order to investigate the relationship between their thermal properties and ionic conductivity. A smectic phase was shown by the vinylimidazole monomer. The in situ photopolymerization of the monomer was carried out in the temperature range of the smectic phase. The polymer thus prepared displayed a highly ordered smectic phase in the temperature range between room temperature and about 200°C. The ionic conductivity of the polymer increased with increasing temperature. Anisotropic ionic conductivity behavior was observed for the polymer. The ionic conductivity of the polymer aligned homogeneously is larger than when homeotropically aligned.  相似文献   

5.
Ionic liquid monomer couples were prepared by the neutralization of 1‐vinylimidazole with vinylsulfonic acid or 3‐sulfopropyl acrylate. These ionic liquid monomer couples were viscous liquid at room temperature and showed low glass transition temperature (Tg) at ?83 °C and ?73 °C, respectively. These monomer couples were copolymerized to prepare ion conductive polymer matrix. Thus prepared ionic liquid copolymers had no carrier ions, and they showed very low ionic conductivity of below 10?9 S cm?1. Equimolar amount of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to imidazolium salt unit was then added to generate carrier ions in the ionic liquid copolymers. Poly(vinylimidazolium‐co‐vinylsulfonate) containing equimolar LiTFSI showed the ionic conductivity of 4 × 10?8 S cm?1 at 30 °C. Advanced copolymer, poly(vinylimidazolium‐co‐3‐sulfopropyl acrylate) which has flexible spacer between the anionic charge and polymer main chain, showed the ionic conductivity of about 10?6 S cm?1 at 30 °C, which is 100 times higher than that of copolymer without spacer. Even an excess amount of LiTFSI was added, the ionic conductivity of the copolymer kept this conductivity. This tendency is completely different from the typical polyether systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.  相似文献   

7.
Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm−1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+/Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4/SNP/Li) exhibit good cycling stability and rate capability at room temperature.  相似文献   

8.
采用传统熔体冷却法制备了Li3-xAl2-xGex(PO4)3(x=1.1~1.9)体系玻璃,并通过热处理工艺获得了高电导率的微晶玻璃.通过XRD、TEM和交流阻抗等测试方法,研究了该系微晶玻璃的物相组成、微观形貌和锂离子电导率.结果表明:该系统微晶玻璃析出导电主晶相为LiGe2(PO4)3,杂质相为AlPO4和GeO2.当x=1.5时,由于导电主晶相LiGe2(PO4)3晶粒充分长大、分布均匀,所制备微晶玻璃的室温锂离子电导率最高(5.72×10-4 S·cm-1),可以满足全固态锂离子电池对电解质高室温电导率的要求.  相似文献   

9.
采用传统熔体冷却法制备了Li3-xAl2-xGex(PO4)3(x=1.1~1.9)体系玻璃,并通过热处理工艺获得了高电导率的微晶玻璃。通过XRD、TEM和交流阻抗等测试方法,研究了该系微晶玻璃的物相组成、微观形貌和锂离子电导率。结果表明:该系统微晶玻璃析出导电主晶相为LiGe2(PO4)3,杂质相为AlPO4和GeO2。当x=1.5时,由于导电主晶相LiGe2(PO4)3晶粒充分长大、分布均匀,所制备微晶玻璃的室温锂离子电导率最高(5.72×10-4 S.cm-1),可以满足全固态锂离子电池对电解质高室温电导率的要求。  相似文献   

10.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
We have developed electrochromic inks and electrolyte materials to enable mass production of flexible electrochromic displays (ECDs) and other optoelectronic devices by screen printing. Here we present a new screen‐printable ink incorporating electrochromic polymer, poly(3,4‐propylenedioxythiophene)bis(ethylhexyloxy), referred to here as ECP‐Magenta, and antimony‐doped tin oxide (ATO/TiO2) particles to facilitate electron transport. Their dispersion in a P(VDF‐co‐HFP) binder leads to the formation of a new electrochromic ink that is suitable for screen printing. This strategy opens the door to the preparation of similar electrochromic inks based on other organic or polymeric compounds. This approach is scalable and can applied to different fields. Ion gels (IGs) composed of P(VDF‐co‐HFP) and room temperature ionic liquids (RTILs) are promising solid‐state electrolytes with high ionic conductivity, flexibility, elasticity and eco‐friendliness. The electrochemical features of different ion gels were analyzed as a function of composition and nature of the ionic liquid. Hence, new formulations of IGs were developed, evaluated by Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, before being incorporated into ECDs. The electrochromic performance of ECP‐Magenta ink combined with the RTIL‐based IG was evaluated by terms of spectroelectrochemistry showing that fully flexible ECD operating at voltages below 1 V can be screen‐printed.  相似文献   

12.
In this work, a thin, flexible and mechanically stable polymer conducting material (Silk‐Ion Jelly) was developed though application of Ion Jelly on to silk fabrics. Ion Jelly was prepared through jellification of a room temperature ionic liquid, 1‐butyl‐3‐methyl‐imidazolium dicyanamide ([bmim][dca]) using gelatin and water and applied to silk fabrics using two different processes: impregnation and in‐situ. Various parameters influencing ionic conductivity such as Ion Jelly composition (ratio of [bmim][dca], water and gelatin) and incorporation as well as the type of application process were thoroughly investigated. It was observed that the Ion Jelly compositions containing lower gelatin and water ratio as well as application through in‐situ process at high temperature (200 °C) led to considerable improvement in conductivity, mainly due to increased [bmim][dca] concentration, structural flexibility and reduced silk crystallinity. Silk‐Ion Jelly prepared using optimized conditions showed excellent mechanical stability and possessed high room temperature conductivity (2.9 × 10?3 S. cm?1), similar to [bmim][dca], and therefore, this novel ion conducting material may find potential applications in electrochemical devices due to its eco‐friendly preparation route using biomaterials and green solvents. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Polymer electrolyte membranes are prepared from novel semi-interpenetrating polymer network material where the sulfonated poly (ether ether ketone) (SPEEK) is the linear polymer and the poly (ethylene glycol) diacrylate (PEGDA) is the cross-linking constituent. The semi-IPN is prepared by in situ polymerization of PEGDA in the presence of sulfonated poly (ether ether ketone). SPEEK is prepared by direct sulfonation of commercial PEEK (Gatone? 1100) by reported procedures. SPEEK with degree of sulfonation 63% (calculated from FT-NMR) is selected as the base membrane and different semi-IPN membranes were prepared by varying the PEGDA and SPEEK ratio. The degree of sulfonation of SPEEK and the formation of semi-IPN were confirmed by spectroscopy studies. The various semi-IPN membranes were characterized for ion-exchange capacity, water uptake, hydrolytic stability, proton conductivity and thermal stability for evaluating the suitability of these membranes for fuel cells. The proton conductivity of the membranes decreased with increasing PEGDA content. The Semi-IPN membranes exhibited conductivities (30°C) from 0.018 S/cm to 0.006 S/cm. These interpenetrating network membranes showed higher hydrolytic stability than the pure SPEEK membrane. This study shows that semi-IPN membranes based on PEGDA and SPEEK can be viable candidates for electrolyte membranes.  相似文献   

14.
Research in the environmentally friendly energy field has grown rapidly due to severe problems such as global warming and climate change. Sodium-ion technology is one of the most promising alternatives to lithium-ion batteries. Use of ionic liquids containing thiocyanate anion has been considered because of their low cost, low viscosity, and nonhazardous nature. In this work, polyethylene oxide (PEO)–sodium perchlorate (NaClO4) samples containing different amounts of 1-butyl-3-methylimidazolium thiocyanate ionic liquid were prepared by a solution casting method. Addition of the ionic liquid to the PEO–NaClO4 electrolyte further increased the ionic conductivity. The electrolyte containing 30 wt% ionic liquid exhibited the maximum ionic conductivity of ~5.0 × 10?4 S/cm at room temperature. Fourier-transform infrared (FT-IR) spectroscopy revealed the interaction between the polymer chain and salt ion complexes for various sodium salt contents. Differential scanning calorimetry (DSC) demonstrated that the crystallinity was reduced by addition of 1-butyl-3-methylimidazolium thiocyanate ionic liquid.  相似文献   

15.
N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu-oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co-hexafluoropropylene) (P(VdF-HFP)) were mixed and made into ionic liquid gel polymerelectrolytes (ILGPEs) by solution casting. The morphology of ILGPEs was observed by scanning electron microscopy. It was found that the ILGPE had a loosened structure with liquid phase uniformly distributed. The ionic conductivity, lithium ion transference num-ber and electrochemical window were measured by electrochemical impedance spectroscopy, chronoamperometric and linear sweep voltammetry. The ionic conductivity and lithium ion transference number of this ILGPE reached 0.79 mS/cm and 0.71 at room temperature, and the electrochemical window was 0 to 5.1 V vs. Li+/Li. Battery tests indicated that the ILGPE is stable when being operated in Li/LiFePO4 batteries. The discharge capacity maintained at about 135, 117, and 100 mAh/g at 30, 75, and 150 mA/g rates, respectively. The capacity retentions were almost 100% after 100 cycles without little capacity fading.  相似文献   

16.
NMR and impedance spectroscopy are used to study the ionic mobility and conductivity in crystalline samples in PbSnF4-MF systems (M = Li, Na, K) in a 150?C473 K temperature range. The 19F NMR spectral parameters, types of ionic motion, and ionic conductivity value in the PbSnF4 compound doped with alkali metal fluoride is found to be determined by the temperature, nature, and concentration of an alkali cation. The specific conductivity of the crystalline samples in PbSnF4-MF systems (M = Li, Na, K) is rather high at room temperature and hence, it seems possible to apply them in the development of functional materials with high ionic (superionic) conductivity.  相似文献   

17.
The cross-linking gel copolymer electrolytes containing alkyl acrylates, triethylene glycol dimethacrylate, and liquid electrolyte were prepared by in situ thermal polymerization. The gel polymer electrolytes containing 15 wt% polymer content and 85 wt% liquid electrolyte content with sufficient mechanical strength showed the high ionic conductivity around 5?×?10?3 Scm?1 at room temperature. The gel electrolytes containing different polymer matrices were prepared, and their physical observation and conductivity were discussed carefully. The cross-linking copolymer gel electrolytes of alkyl acrylates with other monomers were designed and synthesized. The results showed that copolymerization can improve the mechanical properties and ionic conductivities of the gel electrolytes. The polymer matrices of gels had excellent thermal stability and electrochemical stability. The scanning electron microscope analysis showed the gel electrolyte was the homogeneous structure, and the cross-linking polymer host was the porous three-dimensional network structure, which demonstrated the high conductivity of the gel electrolytes. The gel polymer Li-ion battery was prepared by this in situ thermal polymerization. The cell exhibited high charge-discharge efficiency at 0.1 C. The results of LiFePO4-PEA-Li cell and graphite-PEA-Li cell showed that gel polymer electrolytes have good compatibility with the battery electrodes materials.  相似文献   

18.
The dissolution behavior of polyrotaxanes, consisting of α‐cyclodextrin and poly(ethylene glycol), with different molecular weights (2000 and 35,000) was investigated. Halogen‐containing ionic liquids, such as chlorides or bromides, were found to be good solvents for polyrotaxanes, regardless of their cations. Dissolution required a high temperature (above 90 °C), while intensive heating over 105 °C seemed to cause decomposition of the polyrotaxane. The discovery of new solvents for polyrotaxane was applied in the preparation of ionic liquid‐containing slide‐ring gels (SR gels), that is supramolecular networks of polyrotaxane swollen with ionic liquids, using a devised “non‐drying” technique accompanied by solvent exchange. Significant swelling of the SR gels with the ionic liquids was confirmed by dynamic mechanical measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1985–1994, 2006  相似文献   

19.
Thermally stable, flexible polymer gel electrolytes with high ionic conductivity are prepared by mixing the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (C4mpyrTFSI), LiTFSI and poly(vinylidene difluoride-co-hexafluoropropylene (PVDF-HFP). FT-IR and Raman spectroscopy show that an amorphous film is obtained for high (60 %) C4mpyrTFSI contents. Thermogravimetric analysis (TGA) confirms that the polymer gels are stable below ∼300 °C in both nitrogen and air environments. Ionic conductivity of 1.9×10−3 S cm−2 at room temperature is achieved for the 60 % ionic liquid loaded gel. Germanium (Ge) anodes maintain a coulombic efficiency above 95 % after 90 cycles in potential cycling tests with the 60 % C4mpyrTFSI polymer gel.  相似文献   

20.
梳状高分子固体电解质的离子导电性研究   总被引:2,自引:2,他引:0  
丁黎明 《电化学》1996,2(3):299-304
深入研究了交替马来酸酐共聚物多缩乙二醇酯(CP350)两种锂盐络合物CP350/LiAsF_6和CP350/LiPF_6的离子传导性能,给出了与复阻抗谱相对应的等效电路.离子电导率随[Li]/[EO]的变化而出现一极大值,室温下,两体系电导率极大值分别为1.38×10(-4),8.32×10(-5)S/cm.电导率随温度升高而增加.导电行为呈非-Arrhenius特征.阴阳离子半径之和(r_c+r_a)愈大,离子电导率愈高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号