首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid technological development requires sustainable, pure, and clean energy systems, such as hydrogen energy. It is difficult to fabricate efficient, highly active, and inexpensive electrocatalysts for the overall water splitting reaction: the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The present research work deals with a simple hydrothermal synthesis route assisted with ultrasound that was used to fabricate a 3D nanoflower-like porous CoMoS4 electrocatalyst. A symmetric electrolyzer cell was fabricated using a CoMoS4 electrode as both the anode and cathode, with a cell voltage of 1.51 V, to obtain a current density of 10 mA/cm2. Low overpotentials were observed for the CoMoS4 electrode (250 mV for OER and 141 mV for HER) at a current density of 10 mA/cm2.  相似文献   

2.
The activity of NiO/Co3O4 for the hydrogen evolution reaction (HER) during water splitting was increased by depositing these metal oxides on siloxene multi-sheets. The improvement in active sites due to siloxene was used to increase the catalytic activity. The hierarchical structure of the composite with the synergistic effect of metal oxides helped enhance the catalytic activity to show a low overpotential of 110 mV at 10 mA/cm2 in 1 M KOH and stability at 10 mA/cm2 over 20 h without an obvious change in voltage. The as-prepared catalyst can be a promising electrocatalyst for the HER owing to the low cost of transition metal oxides, the abundance of silicon on Earth, and the simplicity of the synthesis process.  相似文献   

3.
Electrochemical splitting of water is an efficient way to produce clean energy for energy storage and conversion devices. Herein, 3D hierarchical NiCo2O4@NiO@Ni core/shell nanocone arrays (NAs) are reported on Ni foam for stable overall water splitting with high efficiency. The architecture and composition of the 3D catalysts are particularly tuned. The outstanding structural and component features of the as‐prepared 3D catalysts are characterized by the vertically grown NiCo2O4 nanocone/NiO nanosheet core/shell structure and Ni decorated 3D‐conductive networks, which largely prompt the catalytic performance. The hybrid catalyst with core/shell nanocone array structures exhibits superior bifuncational activities for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with an overpotential of 240 and 120 mV at a current density of 10 mA cm?2, respectively. The Tafel slope of the optimal 3D electrode is about 43 and 58 mV dec?1 in an alkaline electrolyte for OER and HER, respectively. An alkaline electrolyzer constructed by two symmetric NiCo2O4@NiO@Ni electrodes delivers splendid activity toward overall water splitting with a current of 10 mA cm?2 at only ≈1.60 V and almost no deactivation after 10 h. This work provides a promising strategy to design ternary core/shell electrodes as high performance Janus catalysts for overall water splitting.  相似文献   

4.
Herein this work, we have used the sol-gel chemical synthesis method to prepare spherical shaped MgFe2O4 nanoparticles having size 45–50 nm. Using 1 mol L−1 Sodium Perchlorate (NaClO4) electrolyte, a capacitance of 61 F/g, a capacitance retention of 82.91% (after undergoing 1000 cycles), and an energy density of 41 Wh/kg have been achieved. Using 1 mol L−1 Magnesium Perchlorate (Mg(ClO4)2) as electrolyte, a capacitance of 43 F/g, a capacitance retention of 82.15%, and an energy density of 29 Wh/kg have been realized. Furthermore, MgFe2O4 nanospheres exhibited an overpotential (η) = 1.09 V, a Tafel slope (b) = 317 mV/dec in regard to alkaline Oxygen Evolution Reaction (OER) electrocatalyst. It also achieved η = 402 mV and b = 241 mV/dec in regard towards alkaline Hydrogen Evolution Reaction (HER) electrocatalyst. These results signify the suitability of MgFe2O4 nanoparticles for high energy density aqueous supercapacitor and water splitting electrocatalyst applications.  相似文献   

5.
This paper discusses a novel plasma catalysis generation method based on back-corona discharge along porous catalyst bed reactor. The reactor consists of a high-voltage needle electrode, one floated mesh electrode, one catalyst bed and one grounded mesh electrode. Typical plasma current density is 11.88 μA/cm2. It can be used for ozone generation and volatile organic compounds decomposition. By using a home-made AgMnOx/Al2O3-1 catalyst, 90% of toluene is removed at the specific plasma energy density of 123 J/L. At the same time, aerosol byproducts are collected and then decomposed on the catalyst bed. Moreover, the catalyst is regenerated because of the back-corona discharge.  相似文献   

6.
This paper deals with the current transport mechanism of solid state photoelectrochemical cells of ITO/TiO2/PVC–LiClO4/graphite as well as the physical properties of a component of a device affecting its performance. The principle of operation and a schematic energy level diagram for the materials used in the photoelectrochemical cells are presented. The device makes use of ITO films, TiO2 films, PVC–LiClO4 and graphite films as photoanode, photovoltaic material, solid electrolyte and counter electrode, respectively. The device shows rectification. The Jsc and Voc obtained at 100 mW cm−2 were 0.95 μAcm−2 and 180 mV, respectively.  相似文献   

7.
Zhuo  Kelei  Ma  Xueli  Chen  Yujuan  Wang  Congyue  Li  Aoqi  Yan  Changling 《Ionics》2016,22(10):1947-1955

The molecular imprinting technique is powerful to prepare functional materials with molecular recognition properties. In this work, a potentiometric sensor was fabricated by dispersing molecularly imprinted polymers (MIPs) into plasticized PVC matrix and used for the determination of 1-hexyl-3-methylimidazolium cation ([C6mim]+) in aqueous solution. The MIPs were synthesized by precipitation polymerization using 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl) as the template molecule, methacrylic acid (MAA) and ethylene glycol dimethacrylat (EGDMA) as the functional monomers, and EGDMA also as the cross-linking agent. The as-prepared electrode exhibited a Nernstian response (58.87 ± 0.3 mV per decade) to [C6mim]+ in a concentration range from 1.0 × 10−6 to 0.1 mol kg−1 with a low detection limit of 2.8 × 10−7 mol kg−1, high selectivity, and little pH influence. The as-prepared electrode was used for the detection of the [C6mim]+ in distilled water, tap water, and river water with a good recovery. It was also successfully applied in the determination of mean activity coefficients of [C6mim]Br in fructose + water systems based on the potentiometric method at 298.15 K.

  相似文献   

8.
Serge Zhuiykov 《Ionics》2009,15(6):693-701
An alumina sensor using sub-micron RuO2 sensing electrode (SE) was fabricated and examined for potentiometric dissolved oxygen (DO) detection in water at a temperature range of 9–35 °C. The electromotive force (emf) response at these temperatures was linear to the logarithm of DO concentration in the range from 0.6 to 8.0 ppm (log[O2], −4.71 to −3.59). RuO2-SE displays a Nernstian slope of −41 mV per decade at pH 8.0. It was also found that the response/recovery time to DO changes were sluggish as the water temperature cools down. Response time T 90 to DO changes increased from 8 min at a temperature of 23 °C to about 30 min at a temperature of 9 °C. The proton conductivity of hydrous RuO2 appears to be due to the dissociative adsorption of water and the formation of acidic OH groups in Ru (III,IV) cluster ions. In strong alkaline solutions, the sensor’s emf exhibited a mixed potential of fast and slow electrochemical reactions involving DO, RuO4 2− and OH ions. The results also revealed that as pH of the solution increases to pH 10.0–13.0, the response/recovery rate becomes faster, stabilizing more or less quickly depending upon the solution alkalinity. Scanning electron microscopy, energy dispersive X-ray-analysis and impedance spectroscopy techniques were used to examine respectively the morphology, crystalline structure and electrochemical behaviour of sub-micron RuO2 oxides.  相似文献   

9.
Phosphorus-doped diamond-like carbon (DLC) films were deposited on quartz and p-type silicon (p-Si) substrates by pulsed-laser deposition. Open-circuit voltage (V oc) and short-circuit density (I sc/cm2) from a heating process converted from one type of electrode to another and the two types of electrode pattern are shown by the VI characteristics. The first heating process was by a ceramic heater, and the other was by an infrared heater. We adopted two electrode patterns, from a bipectinate electrode and a plot pattern electrode, to measure electric photovoltaic characteristics. We were able to upgrade V oc and I sc/cm2 to 35∼45 mV, and 0.24 μA/cm2, respectively, under infrared heating. V oc by the plot pattern electrode was over 2 V under infrared heating and ceramic heating did not match this on deposition by the PLD method.  相似文献   

10.
《Current Applied Physics》2020,20(12):1404-1415
We report here the cost-effective synthesis of Magnesium Cobalt Oxide (MgCoO2) sample by the sol-gel synthesis route labeled as MCO - 3. In presence of aqueous 1 M Lithium Sulphate (Li2SO4) electrolyte, we obtained a capacitance of 56 F/g, an energy density of 38 Wh/kg and a capacitance retention of 92.53 % (at 5 A/g) after undergoing 1000 charge-discharge cycles. For the aqueous 1 M Sodium Perchlorate (NaClO4) electrolyte system, we found the capacitance, energy density and capacitance retention of 47 F/g, 31 Wh/kg and 91.41% (at 3.5 A/g for 1000 charge-discharge cycles), respectively. These results establish MgCoO2 as suitable electrode material in aqueous lithium-ion and sodium-ion supercapacitor devices. Further, MCO - 3 in the presence of aqueous 1 M Potassium Hydroxide (KOH) electrolyte showed an overpotential of 400 mV and a Tafel slope of 174 mV/dec, making it a suitable candidate for alkaline Hydrogen Evolution Reaction (HER) electrocatalyst.  相似文献   

11.
Europium-doped yttrium oxide (Y2O3:Eu) thin films were successfully deposited on quartz and ITO/glass substrates by excimer-laser-assisted metal organic deposition (ELAMOD) at low temperatures. The effects of laser wavelength and thermal temperature on the films’ crystallinity and photoluminescence properties were investigated. Films irradiated by an ArF laser at 80 mJ/cm2 and 400–500°C were highly crystallized compared with those prepared by thermal MOD. In contrast, when the film was irradiated by a KrF laser at 500°C, no crystalline Y2O3:Eu was formed. The Y2O3:Eu film irradiated by the ArF laser at 80 mJ/cm2 and 500°C showed typical PL spectra of Eu3+ ions with cubic symmetry and a 5D07F2 transition at ∼612 nm. The PL intensity at 612 nm was much higher for the film prepared with ELAMOD than for that prepared by the thermal-assisted process, and the photoemission intensity of the film prepared with ELAMOD strongly depended on the substrate material.  相似文献   

12.
The reactivity of the (0 0 0 1)-Cr–Cr2O3 surface towards water was studied by means of periodic DFT + U. Several water coverages were studied, from 1.2H2O/nm2 to 14.1H2O/nm2, corresponding to ¼, 1, 2 and 3 water/Cr at the (0 0 0 1)-Cr2O3 surface, respectively. With increasing coverage, water gradually completes the coordination sphere of the surface Cr atoms from 3 (dry surface) to 4 (1.2 and 4.7H2O/nm2), 5 (9.4H2O/nm2) and 6 (14.1H2O/nm2). For all studied coverages, water replaces an O atom from the missing above plane. At coverages 1.2 and 4.7H2O/nm2, the Cr–Os (surface oxygen) acid–base character and bond directionality govern the water adsorption. The adsorption is molecular at the lowest coverage. At 4.7H2O/nm2, molecular and dissociative states are isoenergetic. The activation energy barrier between the two states being as low as 12 kJ/mol, allowing protons exchanges between the OH groups, as evidenced by ab inito molecular dynamics at room temperature. At coverages of 9.4 and 14.1H2O/nm2, 1D- (respectively, 2D-) water networks are formed. The resulting surface terminations are –Cr(OH)2 and –Cr(OH)3– like, respectively. The increased stability of those terminations as compared to the previous ones are due to the stabilization of the adsorbed phase through a H-bond network and to the increase in the Cr coordination number, stabilizing the Cr (t2g) orbitals in the valence band. An atomistic thermodynamic approach allows us to specify the temperature and water pressure domains of prevalence for each surface termination. It is found that the –Cr(OH)3-like, –Cr(OH)2 and anhydrous surfaces may be stabilized depending on (TP) conditions. Calculated energies of adsorption and OH frequencies are in good agreement with published experimental data and support the full hydroxylation model, where the Cr achieves a 6-fold coordination, at saturation.  相似文献   

13.
The continually worsening energy crisis has stimulated research into energy conversion technology to produce pure hydrogen, H2. Transition metal-based compounds have attracted great attention as electrocatalysts for hydrogen evolution reaction (HER) as alternatives to commercial, high-cost, and scarce noble metal-based catalysts. In this work, a 3D flower-like NiS2/MoS2 is synthesized with the advantages of a three-dimensional (3D) morphology and the compositing of different metal compounds, thus leading to enhanced electrocatalytic performance. The structure of 3D flower-like NiS2/MoS2 augments the specific surface areas resulting from nanoplate assemblies as well as the heterointerface ascribed to two different phases of NiS2 and MoS2. These characteristics are confirmed by electrocatalytic measurements of the lower overpotential of 165 mV at 10 mA/cm2 with high charge transfer ability, thus demonstrating the structure's potential for advanced electrocatalysts for the HER.  相似文献   

14.
Recently, transition metal chalcogenides and phosphides have been increasingly reported as efficient and stable oxygen evolution reaction (OER) catalysts in alkaline medium, despite the fact that they are thermodynamically unstable under highly oxidative potentials. Here the active forms of these materials are elucidated by synthesizing a hybrid catalyst, which has a metal chalcogenide in the form of CoSe2 and metal phosphide in the form of CoP—CoSe2|CoP. Both CoSe2 and CoP in the as‐prepared catalyst are completely transformed into their respective oxyhydroxides and hydroxides, which are, in fact, the true OER‐active species in alkaline medium and not the selenide and phosphide themselves. The derived oxides from the hybrid catalyst deliver an excellent OER activity by reaching a current density of 10 mA cm−2 at a low overpotential of 240 mV (vs reversible hydrogen electrode (RHE)) and a Tafel slope of 46.6 mV dec−1. The stability of the derived oxyhydroxide/hydroxide catalyst shows no appreciable deactivation during 120 h of continuous electrolysis, displaying an extraordinary operational stability.  相似文献   

15.
《Current Applied Physics》2010,10(2):682-686
Carbon aerogels were prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions, and they were used as an electrode of electrical double-layer capacitor. The effect of resorcinol to catalyst ratio (R/C ratio) on volume shrinkage, BET surface area, and electrochemical property of carbon aerogels was investigated by changing R/C ratio from 50 to 2000. In order to minimize volume shrinkage, solvent exchange was performed with acetone at 50 °C for 1 day. Volume shrinkage was <2% after 2-day gelation in the absence of CO2 supercritical drying. BET surface area was strongly dependent on R/C ratio. Carbon aerogel prepared at R/C ratio of 500 showed the highest BET surface area (706 m2/g) with average pore diameter of 10.9 nm. Electrochemical property of carbon aerogels as an electrode of electrical double-layer capacitor was investigated by cyclic voltammetry measurement. Specific capacitance of carbon aerogel prepared at R/C ratio of 500 was found to be 81 F/g in 1 M H2SO4 electrolyte at the scan rate of 10 mV/s.  相似文献   

16.
《Current Applied Physics》2020,20(12):1416-1423
Recently, spinel-type binary metal oxides have attracted enormous interest in energy storage devices. In supercapacitors improving energy density is still challenging task and the composite nanostructures are found to address this issue in some extent. Herein, a composite nanostructure based on ZnCo2O4/CdS was synthesized on nickel foam using hydrothermal and successive ionic layer adsorption and reaction (SILAR) methods. A hydrothermally synthesized ZnCo2O4 nanoflowers were coated by CdS nanoparticles by varying SILAR cycles and studied its electrochemical performance. The ZnCo2O4/CdS nanostructured electrode with optimized four SILAR cycles of CdS coating exhibited a high areal capacity, energy density and power density of 2658 mCcm−2, 517 μWhcm−2 and 17.5 mWcm−2 at 25 mA, which is higher than pristine ZnCo2O4. This work show ZnCo2O4/CdS nanostructure is a favorable electrode for supercapacitors.  相似文献   

17.
In order to find a new Er-doped host for near infrared (NIR) optical amplifiers, a study on the optimization of the erbium emission ions in the Y2O3–Al2O3–SiO2 system was performed. (100 ? x) Y3Al5O12 ? (x) SiO2 powders (x varies from 0 to 70, in mol%) with a fixed Er2O3 concentration of 1.0 mol% were synthesized by a modified Pechini method and heat-treated at 900 and 1000 °C. The photoluminescence (PL) spectra at 1540 nm of the 4I13/2 → 4I15/2 transition of Er3+ ions and the up-conversion spectra at visible region (2H11/2 + 4S3/2 + 4F9/2 → 4I15/2) upon 980 nm excitation were evaluated. Different techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were considered to evaluate crystallization and phase-evolution of the powders as a function of the silica content (x) and annealing temperature. The analyses were based on the comparison between two different solvents used in the preparation of the polymeric resins: ethanol and water. The optimal conditions for ethanol are quite different than the conditions for water used as solvent, confirming that the PL properties at the NIR region are highly sensitive to the changes in the host stoichiometry and processing conditions. The highest emission intensity at 1540 nm was observed for x = 30 for ethanol and x = 70 for water, treated at 900 and 1000 °C, respectively. This result could be attributed to the combination of low symmetry and good dispersion of the Er3+ions in these hosts.  相似文献   

18.
《Current Applied Physics》2018,18(1):107-113
In c-Si solar cells, surface recombination velocity increases as the wafer thickness decreases due to an increase in surface to volume ratio. For high efficiency, in addition to low surface recombination velocity at the rear side, a high internal reflection from the rear surface is also required. The SiOxNy film with low absorbance can act as rear surface reflector. In this study, industrially feasible SiO2/SiOxNy stack for rear surface passivation and screen printed local aluminium back surface field were used in the cell structure. A 3 nm thick oxide layer has resulted in low fixed oxide charge density of 1.58 × 1011 cm−2 without parasitic shunting. The oxide layer capped with SiOxNy layer led to surface recombination velocity of 155 cm/s after firing. Using single layer (SiO2) rear passivation, an efficiency of 18.13% has been obtained with Voc of 625 mV, Jsc of 36.4 mA/cm2 and fill factor of 78.7%. By using double layer (SiO2/SiOxNy stack) passivation at the rear side, an efficiency of 18.59% has been achieved with Voc of 632 mV, Jsc of 37.6 mA/cm2, and fill factor of 78.3%. An improved cell performance was obtained with SiO2/SiOxNy rear stack passivation and local BSF.  相似文献   

19.
轩瑞杰  刘慧宣 《中国物理 B》2012,21(8):88104-088104
A battery drivable low-voltage transparent lightly antimony(Sb)-doped SnO2 nanowire electric-double-layer (EDL) field-effect transistor (FET) is fabricated on an ITO glass substrate at room temperature. An ultralow operation voltage of 1 V is obtained on account of an untralarge specific gate capacitance (- 2.14 μF/cm2) directly bound up with mobile ions-induced EDL (sandwiched between the top and bottom electrodes) effect. The transparent FET shows excellent electric characteristics with a field-effect mobility of 54.43 cm2/V. s, current on/off ration of 2 × 104, and subthreshold gate voltage swing (S = dVgs/d(logIds)) of 140 mV/decade. The threshold voltage Yth (0.1 V) is estimated which indicates that the SnO2 namowire transistor operates in an n-type enhanced mode. Such a low-voltage transparent nanowire transistor gated by a microporous SiO2-based solid electrolyte is very promising for battery-powered portable nanoscale sensors.  相似文献   

20.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号