首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperbranched polymers consisting of aromatic or aliphatic polyether cores and epoxide chain‐end peripheries were prepared by proton transfer polymerization. AB2 diepoxyphenol monomer 1 proved to be well suited for the preparation of hyperbranched aromatic polymer 2 by this proton transfer polymerization. The use of chloride‐ion catalysis, rather than conventional base catalysis, for the preparation of polymers from diepoxyphenol 1 offered a unique method to control the ultimate molecular weight of the polymer product through variations of the initial concentration of monomer 1 in tetrahydrofuran. An alternative route to hyperbranched polyether epoxies made use of commercially available or easily prepared aliphatic monomers of the types AB2, AB3, and A2 + B3. Although these aliphatic polymerizations can be initiated with a base, chloride‐ion catalysis proved most effective for controlling the polymerization. The hyperbranched epoxies were characterized by NMR spectroscopy, gel permeation chromatography, and multi‐angle laser light scattering. Chemical modification of the polymers after polymerization was carried out via nucleophilic addition on the epoxide groups or derivatization of the hydroxy substituents within the hyperbranched polymer structure. Spectroscopic measurements suggested that some such ring‐opened materials may adopt reverse unimolecular micellar structures in appropriate solution environments. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4850–4869, 2000  相似文献   

2.
Aluminum porphyrin is an excellent initiator for the living polymerizations of a wide variety of monomers such as epoxide, β-lactone, δ-lactone, ε-lactone, and lactide, and also for the alternating copolymerization of epoxide and cyclic acid anhydride or carbon dioxide, to give polymers and copolymers with narrow molecular weight distribution. Aluminum porphyrin was recently found to initiate also the living polymerization of methacrylic ester. In the polymerizations of epoxides and lactones initiated with aluminum porphyrin in the presence of an appropriate protic compound, polymers with narrow molecular weight can be obtained with the number of the polymer molecules more than those of the initiator. This fact demonstrates the “immortal” nature of the polymerization due to unusual reactivities of aluminum prophyrin.  相似文献   

3.
In this review, we detail the progress throughout the years toward developing truly orthogonal polymerization mechanisms and modification procedures en route to complex macromolecular structures built from synthetic polymer materials. The orthogonal modifications of polymer side-chains and end-groups via sequential click reactions is described providing post-polymerization routes to functional materials and unique polymer topologies. Further, historical and modern orthogonal polymerization methodologies are thoroughly reviewed showing the evolution of the field through the decades long study of selective polymerization mechanisms that provide unique copolymer structures that are typically difficult to achieve. These include the combinations of reversible deactivation radical polymerization mechanisms with a variety of polymerization mechanisms including ring opening polymerizations, ring opening metathesis polymerizations, and cationic polymerizations, to name a few.  相似文献   

4.
Ring-opening polymerization of epoxide initiated by aluminium porphyrin gives polyether with narrow molecular weight distribution even in the presence of chain transfer agent such as alcohol. This is due to the rapid, reversible exchange between (porphinato)aluminium alkoxide as the growing species and alcohol. As a result, the growing polymer molecules never die, and the reaction may be called ‘immortal’ polymerization.  相似文献   

5.
表面光接枝聚合反应新进展   总被引:1,自引:0,他引:1  
表面性能对高分子材料应用至关重要,但多数聚烯烃材料表面惰性,需对表面进行改性或功能化.紫外光引发表面光接枝聚合反应具有诸多优势,因而获得广泛应用.作者以本实验室近年的研究为基础,结合这一领域国际上的部分重要研究成果,概述了实施表面光接枝聚合反应的一些新方法:控制,活性表面光接枝聚合、自引发光接枝聚合、暗区表面光接枝聚合、表面光接枝-交联聚合以及表面小分子光化学反应等.  相似文献   

6.
The inherent differences in reactivity between activated and non‐activated alkenes prevents copolymerization using established polymer synthesis techniques. Research over the past 20 years has greatly advanced the copolymerization of polar vinyl monomers and olefins. This Review highlights the challenges associated with conventional polymerization systems and evaluates the most relevant methods which have been developed to “bridge the gap” between polar vinyl monomers and olefins. We discuss advancements in heteroatom tolerant coordination–insertion polymerizations, methods of controlling radical polymerizations to incorporate olefinic monomers, as well as combined approaches employing sequential polymerizations. Finally, we discuss state‐of‐the‐art stimuli‐responsive systems capable of facile switching between catalytic pathways and provide an outlook towards applications in which tailored copolymers are ideally suited.  相似文献   

7.
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center.  相似文献   

8.
The synthesis and ring-opening copolymerization of epoxy-terminated polystyrene (PS-ep) macromer with epichlorohydrin (ECH) as well as some properties of the graft copolymers, were studied. The results showed that content of the epoxy-terminated macromer in the crude macromer can be increased by anionic polymerization of styrene in cyclohexane, and capping with propylene sulfide, followed by termination with ECH at 0 °C. The ring-opening copolymerization of ECH with the macromer can be performed by using a quaternary catalyst system which was composed of triisobutyl aluminium-phosphoric acid-water-amine in the molar ratio of 1:0.25:0.25:0.1-0.15. When the charging weight percentage of PS-ep/ECH=25-65% and Mn of PS-ep was 2.6-10×103, the conversion of ECH was greater than 95% and the conversion of the macromer or grafting efficiency was 35-65%. The purified copolymer was characterized by IR, 1H NMR and dynamic viscoelastometer to be a copolymer of ECH with polystyrene (PS) grafts. Transmission electron microscope showed the existence of PS domains in the continuous phase of polyepichlorohydrin (PECH). In a certain range of compositions the graft copolymer behaves like a thermoplastic elastomer. The graft copolymer can be melted and processed repeatedly. Its oil and solvent resistance were better than PS and similar to PECH rubber. The graft copolymer can be used as a compatibilizer for blending PECH with PS to form thermoplastic elastomer blends. Only 2% of it based on the blend is needed to raise the tensile strength of the blends obviously.  相似文献   

9.
本文综述了双金属氰化络合物及其催化的环氧化物参与的聚合反应研究。双金属氰化络合物是由其内界金属M通过氰基与外界金属M连接形成的含 M-C≡N-M 桥键的三维网络状无机高分子(M一般为Zn2+、Fe2+、Co2+和Ni2+等二价金属离子,M一般为Fe2+、Fe3+、Co2+、Co3+和Ni2+等过渡金属离子)。外界金属M一般被认为是催化反应的活性中心金属。该类催化剂早期被用于催化环氧化物开环聚合,并逐步发展成为合成中高分子量、低不饱和度聚醚多元醇的极高效催化剂。近年来该类催化剂被用来催化环氧化物/环状酸酐共聚、环氧化物/CX2(X≡O,S)共聚和环氧化物/环状酸酐/CO2三元共聚反应合成聚酯、聚碳酸酯、聚(醚-碳酸酯)、聚硫代碳酸酯和聚(碳酸酯-酯)等具有生物降解性的聚合物。尤其对氧化环己烯(CHO)与CO2(或酸酐)共聚,锌-钴双金属氰化络合物表现出了极高的催化活性和选择性。结合本研究组十多年的研究结果,本文讨论了双金属氰化络合物催化活性中心的可能结构和催化机理,提出了双金属氰化络合物催化聚合的共性难题和解决这些问题的方向。  相似文献   

10.
Polyglycolic acid (PGA), which is an important biodegradable polymer, can traditionally be synthesized through the ring opening polymerization of glycolide (with mostly using tin octanoate catalyst). Our previous studies revealed that PGA was alternatively synthesized with one-step cationic polymerization of formaldehyde from trioxane and carbonmonoxide (CO), sustainable C1 feedstocks obtainable from biomethanol or biogas. PGA and its copolymers can be mainly used for the biomedical applications due to their biocompatibility and biodegradability. In order to utilize PGA in other marketing materials such as packaging, PGA should be specifically engineered to improve its physical properties by a copolymerization strategy utilizing appropriate comonomers since PGA displays brown or beige color and is not soluble in most organic solvents due to its very high crystallinity. In this study; to improve on the physical properties of PGA, such as melting temperature and solubility, polymerizations of trioxane, CO and a minor amount of epoxides with long side chains were performed under the same reaction condition as PGA homopolymer synthesis (DCM solvent, at 800 psi, with triflic acid catalyst, reaction time of 72 h). The results have shown that optimum polymerizations were achieved at lower reaction temperatures than that of PGA homopolymer synthesis (110 °C versus 170 °C). The melting temperatures of all copolymers are lower, and the colors of the copolymers have become lighter than that of PGA homopolymer. The solubilities of obtained copolymers also increased by increasing side chain length of epoxides in the polymer backbone.  相似文献   

11.
The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene “click”-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.  相似文献   

12.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

13.
Polymer networks usually contain numerous inhomogeneities that deteriorate their physical properties and should be eliminated to create reliable, high‐performance materials. A simple method is introduced for the production of nearly ideal networks from various vinyl polymers through controlled polymerization and subsequent crosslinking. Monodisperse star polymers with bromide end groups were synthesized by atom‐transfer radical polymerization and end‐linked with dithiol linkers using thiol–bromide chemistry. This simple procedure formed nearly ideal polymer networks, as revealed from elasticity of the formed gel and model conjugation reactions involving linear polymers. The versatility of this method was demonstrated by preparing networks of common vinyl polymers, including polyacrylates, polymethacrylate, and polystyrene. This method can be used to prepare multiple functional nearly ideal gels and elastomers and to explore fundamental aspects of polymer networks.  相似文献   

14.
Mechanistic transformation approach has been widely applied in polymer synthesis due to its unique feature combining structurally different polymers prepared by different polymerization mechanisms.Reported methods for the formation of block and graft copolymers through mechanistic transformation involve almost all polymerizations modes.However,certain polymerization processes require extensive purification processes,which can be time-consuming and problematic.Recent developments on controlled/living polymerizations involving radical and cationic mechanisms with the ability to control molecular weight and functionality led to new pathways for mechanistic transformations.In this mini-review,we systematically discussed relevant advances in the field through three main titles namely(i)from radical to cationic mechanism,(ii)from cationic to radical mechanism,and(iii)application of specific catalyst systems for both radical and cationic polymerizations.  相似文献   

15.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

16.
Core-shell polymer composites made by two-stage emulsion polymerizations are useful in many applications. In systems involving a hydrophilic/hydrophobic polymer pair, a core-shell arrangement is thermodynamically unfavorable and may be difficult to achieve. To counteract the thermodynamic forces in such a system, the mobility of the phases can be reduced to such an extent that a core-shell morphology is achieved. This was accomplished in a PMMA/PS two-stage system by lowering the second-stage polymerization temperature to room temperature using a redox initiator. At this relatively low temperature, a core-shell morphology was obtained even when the second-stage was carried out as a batch polymerization. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
In this study polymer microspheres were prepared by precipitation and dispersion polymerizations of CHPMA. The effect of polymerization solvent and type of stabilizer on the particle size, size distribution and yield was investigated. In the polymerization experiments two solvents: benzene and dipropyl ether and three stabilizers: MPEG 750, MPEG 5000, PVAc were used. The possible route to modify the surface of the microspheres to obtain epoxide groups was proposed.  相似文献   

18.
Hyperbranched polymers, dendritic macromolecules with branch‐on‐branch structures, have become an important polymer class since the early 1990s. They combine several advantages of the perfectly branched dendrimers with easy accessibility, typically in a one‐step synthesis. Hyperbranched polyethers are a particularly interesting class of chemically stable and often biocompatible materials. Multifunctional hyperbranched polyethers with controllable molar mass and comparably low polydispersities can been prepared using hydroxyl‐functional epoxides or oxetanes for polymerization via anionic and cationic polymerization mechanisms. Here, we review the progress in the preparation, characterization, and application of these uniquely versatile aliphatic polyether polyols. Their unusual mechanical, thermal, and solution properties render them useful for a variety of applications, for example, as building blocks for various complex macromolecular architectures or in biomedical applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Radical polymerization (RP) of multivinyl monomers (MVMs) provides a facile solution for manipulating polymer topology and has received increasing attention due to their industrial and academic significance. Continuous efforts have been made to understand their mechanism, which is the key to regulating materials structure. Modelling techniques have become a powerful tool that can provide detailed information on polymerization kinetics which is inaccessible by experiments. Many publications have reported the combination of experiments and modelling for free radical polymerization (FRP) and reversible-deactivation radical polymerizations (RDRP) of MVMs. Herein, a minireview is presented for the most important modelling techniques and their applications in FRP/RDRP of MVMs. This review hopes to illustrate that the combination of modelling and wet experiments can be a great asset to polymer researchers and inspire new thinking for the future MVMs experiment optimization and product design.  相似文献   

20.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号