首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-graft block copolymers (mGBCPs) consist of two or more types of polymeric side chains grafted on a linear backbone in a random, alternating, or pseudo-alternating sequence. They can phase-separate with the backbone serving as the interface of the blocks, and the side chains dominate their self-assembly behavior. mGBCPs are an accessible polymer architecture for exploring the idea of encoding polymer properties through the macromolecular architecture, as there are two distinct structural components that can be tuned: the backbone and the side chains. In this Concept article, the current literature on the synthesis of mGBCPs is reviewed, and the advantages and disadvantages of each synthetic method are noted. The self-assembly of mGBCPs is also discussed where possible. Finally, directions for future research on mGBCP synthesis and self-assembly are suggested.  相似文献   

2.
采用大单体与小单体共聚的技术,通过自由基引发溶液聚合,合成了一系列水溶性梳状聚合物———聚丙烯酸接枝聚乙二醇单甲醚(PAA-g-mPEG).制备过程分两步进行,首先合成大单体聚乙二醇单甲醚丙烯酸酯,然后将大单体与丙烯酸单体共聚,合成了梳状聚合物.通过控制反应条件,获得了一系列主链和支链组成比不同的接枝共聚物.用傅立叶变换红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)表征了共聚物的结构,并对其侧链的结晶行为进行了研究.采用差热扫描量热法(DSC)表征并分析了不同侧链长度的mPEG的热性能及其结晶情况.利用相差显微镜和原子力显微镜(AFM)观察薄膜的结晶形貌,表明梳状聚合物的侧链mPEG在受限条件下的薄膜结晶形貌为高度支化的晶体,初步分析了mPEG链长及其在共聚物中的重量百分含量对晶体形貌的影响.  相似文献   

3.
For the first time, through macromonomer radical copolymerization, a novel fluorinated polyurethane (FPU) was synthesized based on partly acrylate-endcapped polyurethane macromonomers with hexafluorobutyl acrylate (HFBA). Partly acrylate-endcapped polyurethane (PU) macromonomers were synthesized using isophronediisocyanate (IPDI), dimethylol propionic acid (DMPA), polyethylene adipate glycols (PEA) etc. The novel fluorinated polymer, which bore PU side chains and fluorinated side chains, was confirmed by F19 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis, scanning electron spectroscopy (SEM) etc. Copolymerization of polyurethane macromonomers with hexafluorobutyl acrylate (HFBA) was briefly investigated. The surface tension of FPU solution was measured and showed sharply decrease compared to that of pure polyurethane. Results from SEM showed a uniform size distribution of phase micro-domains on the fracture surface of FPU.  相似文献   

4.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

5.
Poly(ϵ-caprolactone) (PCL) and poly(2-methyloxazoline) (POx) substituted phenyl rings (macromonomers) and the corresponding substituted polyphenylene oligomers have been synthesized in various chemical structures. Macromonomers were synthesized by ring opening polymerization. Poly(phenylene) oligomers were then synthesized by cross-coupling of the macromonomers in Ni-catalyzed polycondensation reactions. The macromonomers and oligomers have been characterized by 1H-NMR, IR, GPC, and DSC. The effect of side chain chemistry and architecture on the resulting morphology in thin films has been investigated by atomic force micro-scopy and wide angle X-ray scattering. Polyphenylene oligomers showed layered morphologies in thin films. The orientation of the layers depended on the chemistry of the side chains and the backbone architecture. Linear oligomers containing statistically distributed segments having POx or PCL side chains showed layers perpendicular to the underlying substrate. Attachment of polystyrene end block to PCL chain together with the meta-connectivity of the backbone resulted in layers parallel to the substrate. Our results also indicate that substitution of polymeric chains to phenyl rings can induce ordered structures of macromonomers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2091–2104, 2007  相似文献   

6.
We have studied the structural changes on poly(2-hydroxyethyl methacrylate) (PHEMA)/polystyrene (PS) blends by means of phase growth of microheterophase pattern on a template surface composed of poly[2-hydroxyethyl methacrylate (HEMA)-g-styrene (S)] graft copolymer (lamellar shape). The PS macromonomer was synthesized by free radical polymerization of S monomer initiated by a functional initiator [2,2'-azobis(2-(2-imidazolin-2-yl)propane: VA-061] in the presence of a degradative chain transfer agent, followed by an end-capping reaction with p-chloromethylstyrene (CMS). Poly(HEMA-g-S) graft copolymers were prepared by free radical copolymerization of these vinylbenzyl-terminated PS macromonomers with HEMA comonomer.  相似文献   

7.
N-Propargylamide-terminated peptide-based macromonomers with a degree of polymerization ranging from 4 to 40 were synthesized by the polymerization of gamma-benzyl and gamma-stearyl-L-glutamate-N-carboxy anhydrides initiated with propargylamine. The macromonomers took an alpha-helical structure, which was confirmed by signals at 208 and 220 nm in CD spectra. The macromonomers were subjected to polymerization and copolymerization with an alanine-derived N-propargylamide [N-(tert-butoxycarbonyl)-L-alanine-N'-propargylamide] catalyzed with (2,5-norbornadiene)Rh+[eta6-C6H5B- (C6H5)3]. It was confirmed through a CD spectroscopic study that the copolymer obtained from the copolymerization of the gamma-stearyl-L-glutamate-based macromonomer with the alanine-derived N-propargylamide had a helical polyacetylene main chain and helical polypeptide side chains.  相似文献   

8.
We describe the preparation and thermal response of aqueous microgels based on poly(N-vinyl caprolactam) containing grafted poly(ethylene glycol) (PEG) chains. These microgels were synthesized by free radical copolymerization of vinyl caprolactam and acetoacetoxyethyl methacrylate in the presence of methoxy-capped poly(ethylene glycol)methacrylate macromonomers. We show that variation of the amount of PEG macromonomer or the length of the PEG chain provides effective control of the microgel diameter in the range 60–220 nm. The presence of the grafted PEG chains improves the colloidal stability of the microgels. The incorporation of the PEG macromonomers into microgel structure decreases the swelling degree and induces a shift of the volume phase transition to higher temperatures. This paper is dedicated to Professor Haruma Kawaguchi in honor of his many contributions to the field of polymer particle synthesis and applications.  相似文献   

9.
A well‐defined (PEO‐PS)2‐PLA miktoarm terpolymer ( 1 ) was synthesized by stepwise click reactions of individually prepared poly(ethylene oxide) (PEO), polystyrene (PS, polymerized by atom transfer radical polymerization), and polylactide (PLA, polymerized by ring‐opening polymerization) blocks. As characterized by differential scanning calorimetry and small‐angle X‐ray scattering techniques, the terpolymer self‐assembled into a hexagonal columnar structure consisting of PLA/PEO cylindrical cores surrounded by PS chains. In contrast, the ion‐doped sample ( 1‐Li+ ) with lithium concentration per ethylene oxide = 0.2 exhibited a three‐phase lamellar structure, which was attributed to the microphase separation between PEO and PLA blocks and to the conformational stabilization of the longest PLA chain. The two‐phase columnar morphology before the ion doping was used to prepare a nanoporous material. PLA chains in the cylindrical core region were hydrolyzed by sodium hydroxide, producing nanopores with a pore diameter of about 14 nm. The resulted nanoporous material sank to the bottom in water, because of water‐compatible PEO chains on the walls. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Two kinds of amphiphilic dendronized conjugated polymers, polyfluorene (PF) and poly(binaphthyl‐alt‐fluorene) (PBF), were synthesized by Suzuki polycondensation of hydrophobic macromonomers with two nonpolar octyloxy chains and hydrophilic macromonomers with two polar oligo(ethylene oxide) chains. In these polymers, PF possesses a linear rod‐like backbone structure, and PBF adopts a folded rigid backbone structure. The different configurations in the conjugated main chains result in different supramolecular self‐assembly morphologies. The optical and thermal properties of PF and PBF were also studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 574–584, 2008  相似文献   

11.
The liquid crystalline phase formation of poly(macromonomer)s associated with the specific multibranched architecture of high branch density was investigated. The poly(macromonomer)s were prepared by radical chain polymerizations of ω‐methacryloyloxyethyl polystyrene macromonomers. It was confirmed that the mesomorphic phase formation depended on the branching architecture, where sufficient length of the branch chains as well as the backbone chain is crucial for the formation of the mesomorphic phase. Formation of the optically anisotropic mesophase also depended on the nature of solvent. The mesophase was observed in the cast films prepared from p‐xylene, toluene, tetrahydrofuran, carbon disulfide and chloroform but not observed for cyclohexane. The effects of the branched structure and the solvent nature were explained by repulsive interaction between the polystyrene branch chains of high branch density. The repulsive interaction increases the chain stiffness of the central backbone and also prevents the interpenetration of the polystyrene branches of different molecules in solution, which allow poly(macromonomer) molecules to arrange with the orientational order. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

13.
Two novel dendritic macromonomers 7 and 8 functionalized with electroactive conjugated thiophene oligomers were synthesized by stepwise cross‐coupling reactions and the introduction of a vinyl group at the focal point. Both macromonomers were polymerized into dendronized polymers 9 and 10 by using a radical polymerization method. The photophysical and redox behaviors of dendronized polymers 9 and 10 are significantly different from those of the corresponding macromonomers. This difference may result from the spatial overlapping of thiophene dendrons through π–π interactions when the dendrons are connected to a polymer backbone. The dendronized polymers can organize into large‐area two‐dimensional sheets with a thickness of 4.8 nm. Polymer 9 , which has all‐dendritic thiophene side chains, exhibited enhanced conductivity by partial doping with iodine or nitrosonium tetrafluoroborate (NOBF4). The novel amphiphilic dendronized polymer 15 was synthesized by the atom‐transfer radical polymerization of macromonomer 7 from a poly(ethylene glycol) (PEG) macroinitiator and was found to have a self‐organized structure in water.  相似文献   

14.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

15.
The pH effect on microsphere formation in the dispersion copolymerization of methyl methacrylate with vinylbenzyl-terminated poly(acrylic acid) (PAA) macromonomers is studied. The diameter of poly(methyl methacrylate) (PMMA) microspheres is minimum around pH = 8. Dynamic light scattering data indicate that the shell thickness of PAA-grafted chains shows a maximum around this pH. The degree of expansion of PAA chains drastically affects the particle size of PMMA microspheres during the dispersion copolymerization.  相似文献   

16.
报道了一种随机高密度接枝亲水、疏水聚合物侧链的刷形两亲性聚合物.首先,结合可逆加成-断裂链转移(RAFT)聚合和后修饰方法,得到含叠氮侧基的聚甲基丙烯酸缩水甘油酯(PGMA-N3)作为主链;再分别合成端炔基聚苯乙烯(PS)和端炔基聚环氧乙烷(PEO),然后通过铜催化的叠氮-炔环加成反应,将疏水性PS和亲水性PEO同时高效的接到PGMA主链上,制得两亲性杂侧链的聚合物刷.由凝胶渗透色谱(SEC)分析得知,在主链叠氮基团与两侧链总炔基的摩尔投料比为1∶1的条件下,PS和PEO的接枝效率很高,都大于90%.通过调节主链长度和2种侧链的投料比,获得不同组成的聚合物刷.通过等质量的甲苯/水混合体系,考察两亲性聚合物刷的乳化能力,发现主链聚合度为100,PS∶PEO比例为70∶30的聚合物刷表现出最佳的乳化性能.  相似文献   

17.
This paper concerns the synthesis of two different structures of styrene-butadiene block copolymers that were respectively obtained via sequential and statistical ring-opening metathesis copolymerization of norbornene-terminated polystyrene (PS) and polybutadiene (PB) macromonomers. The stimulus for preparing such styrene-butadiene copolymers originates from the observation that phase-separated morphologies in block copolymers not only depend on the respective size of the blocks and the interaction parameter (χ), but also on the topological constraints introduced in the copolymer structure. From the differential scanning calorimetry study that was carried, it can be inferred that the two types of copolymers -prepared by sequential and statistical copolymerization of PS and PB macromonomers respectively- exhibit quite different phase separation behaviors, indicating that they develop distinct equilibrium domain morphologies.  相似文献   

18.
An ABC type miktoarm star copolymer possessing polystyrene (PS), poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) arms was synthesized by combining Atom Transfer Radical Polymerization (ATRP) and Ring Opening Polymerization (ROP) with two click chemistries, namely thiol–ene and copper catalyzed azide–alkyne cycloaddition (CuAAC). For this purpose, a core 1-(allyloxy)-3-azidopropan-2-ol with allyl and azide functionalities was synthesized in two steps. Then, clickable polymers, polystyrene with thiol functionality (PS–SH) and poly(ethylene glycol) with alkyne functionality (PEG–acetylene) were independently prepared. As the first step of the grafting onto process, PS–SH was thiol–ene clicked onto the core to yield PS–N3–OH. The second arm was then incorporated onto the core by the Ring Opening Polymerization (ROP) of l-(?)-Lactide (LA) using as PS–N3–OH initiator and tin(II) 2-ethylhexanoate as catalyst. Finally, alkyne–PEG–acetylene was bonded to the resulting PLA–PS–N3 using CuAAC click reaction. All intermediates, related polymers at different stages and final PS–PLA–PEG miktoarm star copolymer were characterized by 1H NMR, FT-IR, SEC and DP-MS analyses. Direct pyrolysis mass spectrometry, (DP-MS) analyses of PS–PLA–PEG and all intermediate polymers indicated that the decomposition of PS and PEG chains occurred almost independently, following the degradation mechanisms of the corresponding homopolymers. On the other hand, during the pyrolysis of PS–PLA–PEG, elimination of H2O during the decomposition of PEG chains at the early stages of pyrolysis caused hydrolysis of PLA chains and increased the yields of CO2, CO and units involving unsaturation and/or crosslinked structure.  相似文献   

19.
The paper deals with the synthesis and polymerization of novel poly(l-lactide)-derived acetylene monomers and the analysis of the thermal properties of the formed graft copolymers. Poly(l-lactide) macromonomers with different acetylene end groups were prepared using stannous octanoate as a catalyst in the presence of various hydroxyacetylenes. Next, the well-characterized macromonomers were subjected to polymerization using [{RhCl(nbd)}2]/Et3N and [RuCl2(CH–o–OiPrC6H4)(IMesH2)] to obtain graft copolymers. Investigation of these graft copolymers by GPC and NMR spectroscopy revealed the presence of some poly(l-lactide) formed as a side product during the ring opening polymerization of l-lactide. The thermal stability of the polymeric materials has been studied as a function of the polyacetylene backbone substituents and the length of poly(l-lactide) side chains. Introducing polyacetylene into polyester increased the polymer stability. The thermal degradation behavior of the synthesized materials depends on the length of poly(l-lactide) chains and also on l-lactide homopolymer impurities in the graft copolymers.  相似文献   

20.
We report the synthesis of polystyrene‐block‐poly(dimethyl siloxane) (PS‐b‐PDMS) brush block copolymers (BBCPs) through sequential ROMP of norbornene‐modified macromonomers (‐NB) and explore the effect of side chain length (Nsc) and total backbone degree of polymerization (Nbb) on the self‐assembly of lamellar morphologies. Group I (PS‐NB Mn = 2.9 kg/mol, PDMS‐NB Mn = 4.8 kg/mol) exhibits asymmetric side chains, while Group II (PS‐NB Mn = 4.7 kg/mol, PDMS‐NB Mn = 4.8 kg/mol) possess a more symmetric arrangement. Both families rapidly self‐assemble into well‐ordered lamellar morphologies with domain spacings (d0) ranging from d0 = 54 to 140 nm. The scaling relationship between d0 and Nbb (d0 ~Nbbα) was determined as the measure of backbone flexibility. Exponents of α = 0.71 and α = 0.81 are observed for Groups I and II, respectively, indicating the BBCPs adopt an extended backbone conformation. The presence of a low Tg side chain such as PDMS increases apparent flexibility of the backbone. The interplay between contrasting characteristics of the side chains is discussed and reveals the importance of understanding the physical consequences of block architecture on controlling BBCP assembly. These findings provide necessary information for future investigations of complex phases and well‐defined nanostructures fabricated using the brush architecture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 691–699  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号