共查询到20条相似文献,搜索用时 0 毫秒
1.
The characterization of the thermal properties of polymers represents a fundamental step in improving materials for energy harvesting processes. Thermal conductivity, for example, is measured by measuring heat flux and temperature difference. This study seeks to design and fabricate an experimental set-up to measure the thermal conductivity of low-thickness polymers at room temperature. It is unique in that it is an affordable and lightweight instrument developed using electrical resistance as a heater and a limited number of components. Error analysis and reproducibility analysis were carried out for the thermal conductivity. The instrument was found to be reliable in making thermal conductivity measurements with an average of ±7%. 相似文献
2.
3.
The thermal conductivity of polyolefins and halogen-substituted polymers was studied in a broad temperature interval spanning both solid and melt states, in the range of pressures from 0.1 up to 100 MPa with the aid of a high-pressure-calorimeter in the continuous heating regime. Treatment of data on the pressure dependence of the thermal conductivity of melts in terms of Barker's equation yielded the values of quasilattice Grueneisen parameter B which exhibited the same dependence on molecular structure of a polymer as the parameter 3C/p from the Simha-Somcynsky equation of state (number of external degress of freedom per chain repeat unit). Analysis of the dependence of the thermal conductivity of polyethylene on the degree of crystallinity revealed the inadequacy of the current two-phase model which does not account for the microheterogeneity of the amorphous phase. It was concluded that interchain heat transfer makes the dominant contribution to the thermal conductivity of polymers both in amorphous and in crystalline states.
Zusammenfassung Mit Hilfe eines Hochdruck-- Kalorimeters mit kontinuierlicher Aufheizung wurde im Druckintervall 0,1 bis 100 MPa und in einem breiten Temperaturbereich, in den sowohl feste als auch flüssige Zustände gehören, die Wärmeleitfähigkeit von Polyolefinen und halogenierten Polymeren untersucht. Drückt man die Druckabhängigkeit der Wärmeleitfähigkeit der Schmelzen mit Hilfe der Barkerschen Gleichung aus, erhält man die Werte für den Quasigitter Grueneisen-Parameterb, der die gleiche Abhängigkeit von der Molekular-struktur eines Polymers zeigt, wie der Parameter 3C/p aus der Gleichung von Simha-Somcynsky (Zahl der externen Freiheitsgrade geteilt durch Kettenstruktureinheit). Eine Untersuchung der Abhängigkeit der Wärmeleitfähigkeit von Polyethylen von Kristallinitäts-grad zeigt die Mängel dieses Zwei-Phasen-Modelles, was die Mikroheterogenität der amorph-en Phase nicht erklärt. Man zog die Schlußfolgerung, daß ein Wärmetransport zwischen den Ketten sowohl im amorphen als auch im kristallinen Zustand den entscheidenden Beitrag zur Wärmeleitfähigkeit von Polymeren liefert.相似文献
4.
J. Zieliński A. Bukowski B. Osowiecka 《Journal of Thermal Analysis and Calorimetry》1995,43(1):271-277
Results of studies dealing with an effect of polymers (selected kinds) and plasticizer on thermal stability of coal-tar pitch were presented. Factors being decisive in miscibility of composition constituents and instability of bitumen-polymer-plasyticizer mixtures were determined. 相似文献
5.
Mickaël Lallart Pierre‐Jean Cottinet Daniel Guyomar Laurent Lebrun 《Journal of Polymer Science.Polymer Physics》2012,50(8):523-535
This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
6.
A. H. Awad 《Journal of Thermal Analysis and Calorimetry》1994,41(5):1031-1040
The density fluctuation model is used to analyze the lattice thermal conductivity data of two samples of polycarbonate between 0.04 and 1K. The study is carried out by calculating the latice thermal conductivity of a noncrystalline polymer as the sum of two contributions asK=K BM+K Em, whereK BE is attributed to phonons which interact with the crystal boundaries,K EM is due to phonons which interact with the empty spaces. The relative importance of each contribution has also been examined by estimating their percentage contributions to the lattice thermal conductivity. An excellent fit to the experimental data was obtained over the whole temperature range. 相似文献
7.
O. F. Shlensky 《Journal of Thermal Analysis and Calorimetry》1995,44(5):1113-1120
Evidence of the existence of a high-limit degradation temperature for polymers is reported. At this high-limit temperature, the rate of polymer thermolysis exceeds the reaction rate predicted by the Arrhenius law by many orders of magnitude. An explanation is proposed for the observed behaviour, based on the disappearance of intermolecular interactions. For the study of degradation reactions under high-limit temperature conditions, new methods of fast (pulsed) thermal analysis are presented. The investigated samples, as very thin films, are brought into tight contact with a hot moving metal surface. Under these conditions, the heating rate exceeds 104 deg/s, allowing estimation of accompanying decomposition rates for heating times of the order of 0.01 s. 相似文献
8.
A novel Schiff base, 4‐bromo‐2‐[(2‐[(5‐bromo‐2‐hydroxyphenyl)methylene]amino‐5‐nitrophenyl)iminomethyl]phenol (M1) was synthesized from the reaction of 5‐brom‐salicylaldehyde with 4‐nitro‐o‐phenylenediamine. Schiff base–metal complex was synthesized from the reaction of 4‐bromo‐2‐[(2‐[(5‐bromo‐2‐ hydroxyphenyl)methylene]amino‐5‐nitrophenyl)iminomethyl]phenol (M1) with copper (II) acetate monohydrate [(CH3COO)2 Cu · H2O] salt. Poly‐ (M1‐Cu‐TDP) was synthesized from the reaction of M1‐Cu with 4,4′‐dithiodiphenol (TDP). Poly(M1‐Cu‐PDP) was synthesized from the reaction of M1‐Cu with 4,4′‐propane‐2,2‐diyldiphenol (PDP). Poly(M1‐Cu‐HDP) was synthesized from the reaction of M1‐Cu with 4,4′‐(1,1,1,3,3,3‐hexafluoropropane‐2,2‐di‐yl)diphenol (HDP). The structures of the synthesized monomer and chelate polymers were confirmed by FT‐IR, UV–Vis, 1H‐ and 13C‐NMR, and elemental analysis. The characterization was made by TGA‐DTA, DSC, size exclusion chromatography, cyclic voltammetry, and solubility tests. Also, surface morphologies of chelate polymers were investigated by scanning electron microscope. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
Controlled release technology addresses problems associated with excessive use of toxic agricultural chemicals. This paper reviews the studies on the use of carbohydrate polymers as controlled release matrices for pesticides. Alginates, starch and its derivatives, chitosan, carboxymethylcellulose and ethylcellulose are some of the natural polymers discussed in this review. The advantages and disadvantages of these polymeric systems as well as the factors that affect pesticide release are presented. A discussion on the polymers’ encapsulation efficiency and release profile is also included, which will aid future researchers in identifying the suitable formulation for controlled release of pesticides. Combination of two polymers, incorporation of sorbents into polymer matrices, and modification of polymer systems are some of the strategies also discussed herein. Recent trends in this area of research include nanoformulation, nanoencapsulation, and the development of polymeric systems with dual properties such as controlled release with photo-protective property and the attract-and-kill strategy. Cytotoxicity studies are being conducted to address safety issues of pesticide handlers as well as to determine the toxicity of the formulation to non-target organisms such as the plant itself. 相似文献
10.
C. L. Choy Y. W. Wong K. W. E. Lau Guangwu Yang A. F. Yee 《Journal of Polymer Science.Polymer Physics》1995,33(14):2055-2064
The thermal conductivity and thermal expansivity of a thermotropic liquid crystalline copolyesteramide with draw ratio λ from 1.3 to 15 have been measured parallel and perpendicular to the draw direction from 120 to 430 K. The sharp rise in the axial thermal conductivity Kpar; and the drastic drop in the axial expansivity α∥ at low λ, and the saturation of these two quantities at λ > 4 arise from the corresponding increase in the degree of chain orientation revealed by wide-angle x-ray diffraction. In the transverse direction, the thermal conductivity and expansivity exhibit the opposite trends but the changes are relatively small. The draw ratio dependences of the thermal conductivity and expansivity agree reasonably with the predictions of the aggregate model. At high orientation, Kpar; of the copolyesteramide is slightly higher than that of polypropylene but one order of magnitude lower than that of polyethylene. In common with other highly oriented polymers such as the lyotropic liquid crystalline polymer, Kevlar 49, and flexible chain polymer, polyethylene, αpar; of the copolyesteramide is negative, with a room temperature value differing from those of Kevlar 49 and polyethylene by less than 50%. Both the axial and transverse expansivity show transitions at about 390 and 270 K, which are associated with large-scale segmental motions of the chains and local motions of the naphthalene units, respectively. ©1995 John Wiley & Sons, Inc. 相似文献
11.
O. B. Salamatina S. N. Rudnev V. V. Voenniy E. F. Oleynik 《Journal of Thermal Analysis and Calorimetry》1992,38(5):1271-1281
Measurements of the mechanical work (A), the heat of deformation (Q) and differences between these quantities, i.e. the internal energy (U) stored in samples were performed under the unidirectional compression loading conditions by using constant temperature deformation calorimetry. It is shown for several glassy (PS, PC, PI-BD, PET, epoxy-amine network, ABS) semi crystalline (PBT, PET) polymers and blends (PC: ABS, PC: PBT), that 45–85% of the mechanical work of deformation is converted to internal energy stored in deformed samples U is quite high as compared with metals.
Zusammenfassung Mittels Konstanttemperatur-Deformationskalorimetrie wurden bei gerichteter Kompressionsbelastung Messungen der mechanischen Arbeit (A), der Deformations-wärme (Q) und der Differenz beider Größen, d.h. der in den Proben enthaltenen inneren Energie (U) durchgeführt. Für einige amorphe Polymere (PS, PC, PI-BD, PET, Epoxy-Amine-Netzwerk, ABS), halbkristalline Polymere (PBT, PET) und Gemische (PC:ABS, PC:PBT) wurde gezeigt, daß 45–85 % der mechanischen Deformationsarbeit in den Proben als innere Energie gespeichert wird.相似文献
12.
H. Sobhi M. Ellen Matthews B. Grandy J. Masnovi A. T. Riga 《Journal of Thermal Analysis and Calorimetry》2008,93(2):535-539
This biomaterials overview for selecting polymers for medical devices focuses on polymer materials, properties and performance.
An improved understanding of thermoplastics and thermoset properties is accomplished by thermal analysis for device applications.
The medical applications and requirements as well as the oxidative and mechanical stability of currently used polymers in
devices are discussed. The tools used to aid the ranking of the thermoplastics and thermosets are differential scanning calorimetry
(DSC), thermogravimetry (TG), thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) as well as a number
of key ASTM polymer tests. This paper will spotlight the thermal and mechanical characterization of the bio-compatible polymers
e.g., olefins, nylon, polyacetals, polyvinyl chloride and polyesters. 相似文献
13.
Redox polymers have been an expanding research area over the last 30 years. The design of redox polymers for mediated bioelectrocatalysis revolutionized glucose biosensors in the early 1990s. These concepts were then applied to biofuel cells in the 2000s, but it was not until recently that researchers further translated these concepts to the fields of electrosynthesis, supercapacitors, and redox flow batteries. This review will give a short background to the early work in the field but will primarily discuss the recent applications of the electrosynthesis, supercapacitors, and redox flow batteries. 相似文献
14.
15.
Molecularly imprinted polymers are generated by curing a cross-linked polymer in the presence of a template. During the curing process, noncovalent bonds form between the polymer and the template. The interaction sites for the noncovalent bonds become "frozen" in the cross-linking polymer and maintain their shape even after the template is removed. The resulting cavities reproduce the size and shape of the template and can selectively reincorporate the template when a mixture containing it flows over the imprinted surface. In the last few decades the field of molecular imprinting has evolved from being able to selectively capture only small molecules to dealing with all kinds of samples. Molecularly imprinted polymers (MIPs) have been generated for analytes as diverse as metal ions, drug molecules, environmental pollutants, proteins and viruses to entire cells. We review here the relatively new field of surface imprinting, which creates imprints of large, biologically relevant templates. The traditional bulk imprinting, where a template is simply added to a prepolymer before curing, cannot be applied if the analyte is too large to diffuse from the cured polymer. Special methods must be used to generate binding sites only on a surface. Those techniques have solved crucial problems in separation science as well as chemical and biochemical sensing. The implementation of imprinted polymers into microfluidic chips has greatly improved the applicability of microfluidics. We present the latest advances and different approaches of surface imprinting and their applications for microfluidic devices. 相似文献
16.
分子印迹聚合物是通过在模板存在下固化交联的聚合物制备的.在固化过程中,聚合物和模板间形成非共价键.这些非共价结合位点被"冻结"在交联的聚合物中,即使移去模板后也依然维持他们的形状.余下的空穴与模板的尺寸和形状一致,并且可以选择性地从流过的混合物中俘获模板物质.在近几十年中,分子印迹的领域由选择性俘获小分子扩展到处理各种类型的样品.分子印迹聚合物(MIP)被用于分析种类繁多的样品,比如金属离子、药物分子、环境污染物、蛋白、病毒以至整个细胞.本文中我们综述相对较新的领域——表面印迹,这是一种可以用来生成相对较大的生物相关模板的印迹方法.传统的整体印迹法是直接在固化前将模板加入预聚体中,因而不适用于那些大到无法从固化后的聚合物中扩散出来的物质.要仅在表面上生成结合位点,必须要使用特别的方法,由此产生的表面印迹技术解决了分离科学以及化学和生物化学监测的重要问题.将印迹聚合物植入微流控芯片,大大扩展了微流体技术的适用性.本文叙述表面印迹最新的进展以及不同的实施手段,以及它们在微流控器件中的应用. 相似文献
17.
Yong Lu Zheng Guo Jing-Jing Song Qin-An Huang Si-Wei Zhu Xing-Jiu Huang Yan Wei 《Analytica chimica acta》2016
A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. 相似文献
18.
The growing need for reliable analytical tools to perform measurements at the point-of-need has prompted the development of novel sensors that are low cost, portable, sensitive, easy to use, and capable of multiplexed analysis. Miniaturization of the sensors into microfluidic platforms has become a promising approach to achieve these self-contained sensors. However, traditional microfluidics often require relatively expensive and complicated pumping mechanisms that increase the cost and limit the portability of the sensors. From a material perspective, paper is an attractive substrate for constructing point-of-need sensors because of its affordability, vast availability, and self-pumping ability, particularly when combined with electrochemical detection. In this mini-review, we discuss various strategies to achieve multiplexing or simultaneous detection of multiple analytes in electrochemical paper-based devices and provide a brief guide on selecting the detection strategy based on the electrochemical property of the analytes. 相似文献
19.
The reversible photochromic response of tungsten oxide (WO3) holds promise for solar-related applications as it is capable of photo charging during illumination (color-switching) and spontaneous discharging post-illumination (self-bleaching). Advances in WO3-based nanostructures synthesis via micro/nanofabrication techniques have created remarkable potential application opportunities. Smart windows represent a typical energy-saving technology; ultraviolet indicators can sense radiation safety limits, and the around-the-clock photocatalysts can be used for pollutant degradation and bacterial disinfection applications. These materials, their distinct properties, and the effects of their application must be comprehensively understood prior to commercialization. In this work, we first summarize the affiliation between the crystallographic properties-optical features-photochromic behavior of WO3. Several photochromic models and kinetic equations are then presented, accompanied by the related characterization techniques and evaluation methods. The factors affecting photochromic efficiency (e.g., light absorption, surface reaction, and carrier migration) are delineated to clarify the advantages of the specific nanostructured WO3 and the most efficient available strategies for constructing WO3-based nanomaterials. The theory, technique, and performance associated with chromogenic applications in smart devices, energy conversion, and environmental remediation are deliberated in detail. Finally, we outline the challenges and emerging trends in this area calling for further innovation to fill various gaps. 相似文献
20.
Enzo Giannetti 《Journal of fluorine chemistry》2005,126(4):623-630
Intrinsic bond dissociation energies (BDEs) of selected fluorinated polymers are critically evaluated. Two distinctive approaches were followed. In the first one, according to Wu and Rodgers [E.-C. Wu, A.S. Rodgers, J. Am. Chem. Soc. 98 (1976) 6112-6115], starting from the gas-phase enthalpy of polymerization we obtained the polymer backbone BDE through appropriate thermodynamic cycles. Revised experimental results indicate that the CC BDEs of all the polymers taken into account fall within a limited energy interval, comparable to the average experimental uncertainty. Central to the second methodology adopted, is a model compound approach. Thanks to the large number of reliable thermodynamic data available in the scientific literature and to simple end-capping rules, C2 molecules were chosen as suitable models for infinite linear polymers and alternating copolymers between ethylene and fluorinated olefins. For partially fluorinated polymers, like polyvinylidene fluoride (PVDF), alternating ethylene-tertrafluoroethylene (ETFE) and alternating ethylene-chlorotrifluoroethylene (ECTFE), the weight loss due to HF and HCl evolution during heating experiments was successfully related to the threshold energy Eo(HX) for 1,2-elimination from chemically activated hydrofluoro and hydrofluorochlorocarbons according to the modified Rice-Rampsberger-Kassel (RRKM) unimolecular theory. 相似文献