首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated polycaprolactone (PCL), 1,3-bis-2,2′(2-isocyanatopropyl)benzene (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA were synthesized. Glass transition temperature, Tg, dynamic mechanical relaxation, α, and equilibrium tensile modulus, E′, were measured to compare the two kinds of networks. To explain thermal and mechanical properties of networks, the concept of hard clusters has been introduced. PU networks exhibit a single-phase structure with modulus and Tg dependent on the concentration of elastically active network chains (EANC) per unit volume calculated by considering hard crosslink clusters. The rigidity of the clusters comes from small diisocyanate and trimethylolpropane units connected by urethane bonds. They are embedded in a continuous soft phase of macrodiol urethane. Physical equivalence between several kinds of network models has been demonstrated for full conversion of isocyanate-alcohol reaction. PUA networks exhibit thermodynamically one-phase structures that become a two-phase structure for high molar mass of macrodiol when the molar fraction of isocyanate groups increases. For those networks, the calculated modulus considering clusters based on polyacrylate chains seems to be a good way to approach the experimental value of the equilibrium modulus. For the same molar ratio of OH to NCO groups the range of dynamic moduli is larger for PUA than for PU. This difference can be explained by a different concentration of crosslinks in the networks. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A polymerizable hindered amine light stabilizer (HALS) 1,2,2,6,6-pentamethylpiperidin-4-yl acrylate (PMPA) was synthesized through transesterification of 1,2,2,6,6-pentamethylpiperidin-4-ol (PMP) with methyl acrylate (MA). Core-shell latex particles containing HALS moieties in the shell phase were prepared by two-stage seeded emulsion polymerization from n-butyl acrylate (BA), methyl methacrylate (MMA) and PMPA. The Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR) analysis showed that PMPA monomer was successfully prepared and was effectively involved in the polyacrylate particles. The surface composition was studied by X-ray photoelectron spectroscopy (XPS), and the results indicated that HALS-containing groups could be distributed on the surfaces of the particles. Transmission electron microscopy (TEM) analysis revealed that the particles obtained presented a core-shell structure with a particle size around 100 nm. Two glass transition temperatures (Tg), assigned to the core phase and the shell phase of the particles, respectively, were observed for both HALS-containing and HALS-free particles, as determined by differential scanning calorimetry (DSC). In addition, the Tg value for the shell phase of HALS-containing particles was 13 °C lower than that of HALS-free particles, indicating the presence of random copolymer between MMA monomer and PMPA comonomer in the shell phase. The thermogravimetry analysis (TGA) and differential thermal gravimetric (DTG) results showed that HALS-containing particles provided an improvement in thermal stability in comparison to HALS-free particles.  相似文献   

3.
Linear polyurethane, linear segmented polyurethane, polyurethane networks, and polyurethane acrylate networks of various composition were synthesized. The variation of Tg with the type of macrodiol, its length, and the chemical composition of the polymer were studied in relation with the percentage of soft segments, the molar mass between crosslinks, and the concentration of urethane bonds. In this work, the networks were considered as composed of chain segments of various composition between point-like crosslinks. The chemical heterogeneities of the networks were not taken into account. For polyurethanes, it was shown that Tg values are essentially controlled by the amount of urethane bonds. For polyurethane acrylates, the Tg values are dependent on the amount of urethane bonds but also on the presence of crosslinks whose number is varying with the excess of diisocyanate of the first step three times faster for PUA compared with PU. No clear relation was observed between Tg and the molar mass between point-like crosslinks. Another approach considering the network heterogeneities is indispensable and will be used in a following work. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Insertion of CO2 into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2 and a derivatized oxirane. All the carbonate analogues possess higher glass‐transition temperatures (Tg=32 to ?5 °C) than alkyl acrylates (Tg=10 to ?50 °C), however, the carbonate analogues (Td≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td≈380 °C). The poly(alkyl carbonates) exhibit compositional‐dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2 in a time‐ and pH‐dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.  相似文献   

5.
Two hyperbranched prepolymers were synthesized via the reversible addition‐fragmentation chain transfer copolymerization of butyl acrylate or butyl methacrylate with divinyl benzene, respectively. These prepolymers were used in the photopolymerization‐induced phase separation process of preparing polymer dispersed liquid crystal (PDLC) films with no risk of gelation. The morphologies of PDLC samples were investigated. Of particular interest was that the driving voltage (V90) of PDLC with high glass transition temperature (Tg) matrix was as low as 5 V, whereas the V90 of PDLC with low Tg matrix was still high. An explanation for this phenomenon is the hypothesis that different interaction modes function at the interface of liquid crystal and polymer. Meanwhile, the hysteresis of the two systems was minor, which correlated with the hyperbranched structure of polymer. The on‐state transmittance (TON) of PDLC films enhanced because of the well matching between the refractive index of polymer and that of liquid crystal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
New ether dimer (ED‐Eh) and diester (EHDE) derivatives of α‐(hydroxymethyl)acrylate, each having two 2‐ethylhexyl side chains, and an amine‐linked di(2‐ethylhexyl)acrylate (AL‐Eh), having three 2‐ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high‐molecular–weight polymers. Cyclopolymer formation of ED‐Eh and AL‐Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED‐Eh, EHDE, and AL‐Eh with methyl methacrylate (MMA) showed significant Tg decreases over poly(methyl methacrylate) (PMMA) due to 2‐ethylhexyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of 2‐ethylhexyl methacrylate, ED‐Eh, EHDE, and AL‐Eh with MMA revealed that the impacts of these monomers on depression of Tg's are identical with respect to the total concentration of the pendent groups. This is consistent with an earlier study involving copolymers of monomers comprising one and two octadecyl side groups with MMA. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the 2‐ethylhexyl pendent groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2302–2310, 2010  相似文献   

7.
Composite polyacrylate latex particles were prepared through a simple method by dissolving organosilicon monomer methyltrimethoxysilane in a monomer mixture of acrylic monomers methyl methacrylate (MMA), n‐butyl acrylate (n‐BA), and acrylic acid (AA). With the addition of water needed for hydrolysis, methyltrimethoxylsilane hydrolyzed under catalysis by AA and further condensed to form polymeric methylsilsesquioxane (MSQ). The monomer mixture containing in situ‐formed MSQ was then subjected to emulsification and emulsion polymerization. Transmission electron microscopy (TEM) images showed that the obtained latex particles had a core–shell structure. Differences between the X‐ray photoelectron spectroscopy (XPS) results of the contents of silicon atoms on surfaces of films formed at temperatures above and below glass transition temperatures (Tgs) of polyacrylate evidenced that the cores were made up of MSQ and the shells were made up of polyacrylate. The static water contact angle measurements indicated that the incorporation of MSQ can result in composite latex with higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Summary: A soybean oil-based vegetable oil macromonomer (VOMM) was incorporated as a comonomer into an all-acrylic copolymer via semi-continuous emulsion polymerization. Structurally, VOMMs are comprised of long hydrocarbon fatty acid moieties with allylic double bonds which enable auto-oxidative crosslinking at ambient temperature. VOMMs facilitate low temperature film formation and the fatty acid chains tethered to the polymer backbone auto-oxidize upon film formation to yield crosslinked films. Latexes with varying VOMM levels were synthesized to elucidate the effect of VOMMs on the pre-cure and post-cure glass transition temperature (Tg) and minimum film formation temperature (MFT). Thermoplastic control latexes (without VOMM) were also synthesized via copolymerization of butyl acrylate and methyl methacrylate. This paper details the characterization performed to validate and quantify the VOMM allylic unsaturation retention before, during, and after polymerization, and to quantify and confirm the increase in Tg resulting from auto-oxidative crosslinking via solid state 13C nuclear magnetic resonance spectroscopy and differential scanning calorimetry.  相似文献   

9.
We have synthesized and characterized the graft copolymer of polymethyl methacrylate (PMMA)-graft-polycarbonate urethane (PCU) (designated PMMA-g-PCU) and the fully gelled mutually crosslinked network composed of both PMMA and PCU (designated as PMMA-PCU-N). Unlike the previously synthesized one phase PCU/PMMA simultaneous interpenetrating polymer networks (IPN's), both of these new materials exhibited two distinct Tg's (from DSC and DMA studies) at all compositions which we have studied. The two-phase nature of the graft and network polymer was confirmed by TEM with domain sizes smaller than those found in the blends of the linear PCU and PMMA chains. In comparison with the corresponding IPN's, the PMMA-g-PCU and the PMMA-PCU-N were thermally less stable and had a lower ultimate strength. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
The effect of butyl acrylate (BA), divinyl benzene (DVB) and vinyltrimethoxysilane (TMVS) on the thermal properties of poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) was investigated. Glass transition temperature (Tg), melting temperature (Tm) and specific heat capacity of the copolymers were investigated using Differential Scanning Calorimetry. Thermal stability of the copolymers which is associated with the degradation temperature (Td) was studied by Thermogravimetric Analysis. Polyacrylates with Tg ranges between -19°Cand 19°C were obtained. With the incorporation of >7 wt% of DVB, the Tg of the copolymer increases from about ?17°C to ?10°C even though they have not undergone UV irradiation. Gel content results prove that crosslinking has occurred in the copolymers. With increasing amount of TMVS from 0 wt% to 7 wt%, the Tm of the copolymers prepared at acidic pH is about 40-60°C higher than that at the alkaline pH. However, the addition of TMVS gives no significant effect to the Tg and Td of the copolymer films. The thermal stability of the copolymer has improved with increasing amount of BA and DVB, with DVB being more effective. The highest Td of 425°C with 8% of DVB has been obtained. Consequently, a polyacrylate copolymer with a Tg of about ?13°C, a Tm of 170 °C and a Td of about 424°C has been successfully synthesized. Hence, the soft polyacrylate with its relatively high Tm and Td could serve as a superb material especially to be applied in the areas that require high melting temperature and good thermal stability.  相似文献   

11.
A poly(acrylamide) was synthesized from N α -Boc-N ? -acrolyl-l-lysylglycine methyl ester via radical polymerization. This polymer typically had Mn ~ 100,000 g/mol, Mw ~ 300,000 g/mol, and a Tg of 93°C. Removal of Boc with TFA and cyclization with DABCO? in DMSO at 65°C afforded a soluble piperazinedione-containing polymer that had a Tg of 157°C and thermal stability up to 300°C. These results demonstrate a viable and efficient synthetic route to piperazinedione-containing polyacrylamides of high molecular weight. Related polymers that incorporate substituted indane moieties could be useful high Tg materials for fabrication of LC and NLO devices.  相似文献   

12.
Cross-linked poly(methyl methacrylate) particles were prepared via dispersion polymerization in supercritical carbon dioxide (scCO2) using poly(heptadecafluorodecyl methacrylate) (PHDFDMA) and 2,2′-azobisisobutyronitrile as the dispersant and the initiator, respectively. The following chemicals were used as cross-linking agents: ethylene glycol dimethacrylate (EGDMA), 1,4-buthanediol di(meth)acrylate (1,4-BD(M)A), and trimethylolpropane trimethacrylate. PHDFDMA was synthesized by solution polymerization in scCO2. We investigated the effect of the chemical structure, concentration of the cross-linking agents, reaction pressure, and CO2 density on the morphology, the polydispersity, and the cross-linking density of polymer particles. The resulting polymer particle was characterized by field emission SEM, differential scanning calorimetry, and thermal gravimetric analysis. The cross-linked PMMA particles is more agglomerate as the cross-linking agent concentration increased and as pressure decreased at constant temperature. Glass-transition temperature (T g) of the resulting polymer increased as the cross-linking agent increased with temperature and pressure increasing at the same CO2 density. Decomposition temperature is slightly increased as 1,4-BDA concentration increased. From these results, we can confirm that the thermal stability of the polymer increased as the cross-linking agent and EGDMA is the best cross-linking agent in term of the thermal stability.  相似文献   

13.
Graded‐index plastic optical fibers, composed of doped polymers, have advantages over conventional glass optical fibers, but need to be developed further for practical application. Here, a variety of aromatic sulfide dopants were synthesized, and their effects on the refractive indexes and glass transition temperatures (Tg) of poly(methyl methacrylate) and methyl 2‐chloroacrylate/2,2,2‐trichloroethyl methacrylate copolymers were studied. While polymers containing large dopants exhibited relatively high refractive indices, their Tg values were low, making these materials unsuitable for graded‐index plastic optical fiber applications. Six dopants yielded polymers that exhibited higher Tg values than the conventionally used (diphenyl sulfide)‐doped polymer. The dopant dibenzothiophene, in particular, yielded polymers with the highest refractive indexes and Tg values, and polymers containing (phenylthio)benzene dopants also performed well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2193–2206, 1997  相似文献   

15.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

16.
The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ − 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1501–1514, 1997  相似文献   

17.
A series of methacrylates bearing bicyclobis(γ‐butyrolactone) (BBL) moiety were synthesized and radically polymerized to afford the corresponding poly(methacrylate)s bearing BBL moiety in the side chain, with expecting that the high polarity and rigidity of BBL would be inherited by the polymers. The resulting polymers were soluble in polar aprotic solvents such as dimethyl sulfoxide and N,N‐dimethylformamide because of the high polarity of the BBL moiety. The glass transition temperatures (Tg) of the polymers depended on the length of methylene linker that tethered the methacrylate and BBL moieties, making the use of shorter linkers lead to higher Tgs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2462–2468  相似文献   

18.
Dimethacrylates with rigid adamantane-like cores were synthesized from myo-inositol orthoester via a sequence of (a) acylation or silylation of the equatorially oriented hydroxyl group, followed by (b) attachment of methacrylate groups on the axially oriented hydroxyl groups. The radical homopolymerization of these compounds proceeded via cyclopolymerization without crosslinking, as the two axially oriented methacrylate groups were fixed in close proximity with each other. The dimethacrylates underwent radical copolymerization with methyl methacrylate (MMA) to afford the corresponding polymethacrylates, exhibiting high glass transition temperatures (Tg), due to the introduction of the rigid orthoester moieties originating from the monomers and the macrocyclic structures formed via intramolecular cyclization of the two methacrylate groups of the monomers. The polymers obtained by polymerization of the dimethacrylate bearing a silylated hydroxyl group served as precursors of hydroxyl-bearing polymers, which also exhibited high Tg due to the formation of a hydrogen bonding network between the hydroxyl groups.  相似文献   

19.
We describe an original QSPR model called the EVM model (Energy, Volume, Mass) to calculate the glass transition temperature (Tg) of aliphatic acrylate and methacrylate homopolymers using classical molecular mechanics and dynamics. The latter was used to calculate an energy density function related to the cylindrical volume of a 20 monomer unit polymer segment (TSSV, Total Space around a Standard deviation Volume). We then calculated the Tg as a function of this density function and the repeat unit molecular weight, although no interchain interactions were taken into account. For linear and branched aliphatic acrylate and methacrylate polymers, the standard deviation from linear regression was 12 K, and the r2 was 0.96. The model allows calculation of the Tg with an average absolute error of error of 10% for linear and branched derivatives not included in the original linear regression analysis. The results obtained with the EVM model are compared with those obtained with Bicerano's model. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2579–2590, 1997  相似文献   

20.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号