首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anionic tetrahydrofuran clusters (THF)(n) (-) (1≤n≤100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n) (-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n) (-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron.  相似文献   

2.
Configuration of the surface atoms in aluminum clusters was investigated based on the structures with global minimum potential energy of some Al clusters in the size range of 270-500. The structures were optimized by the dynamic lattice searching with constructed cores (DLSc) method with the NP-B potential. In the optimized structures, all clusters are identified as truncated octahedra (TO) including three complete TO at Al(260), Al(314), and Al(405). With the model of TO(260) and TO(405), the configurations of the surface atoms in the structures of the clusters from 261 to 314 and from 406 to 459 were investigated. The sites on (100) faces are found to be preferable to those on (111) faces for locating the new atoms with the increase of the cluster size, but for the clusters larger than 405 atoms, the sites on the (111) face are favored when the number of atoms exceeds the site number of a (100) face. Furthermore, the sites on the edge adjoining a (100) face and a (111) face are found to be very important to make a cluster more stable.  相似文献   

3.
Sn1-2xFexNbxO2(0.45≤x≤0.50) samples were prepared at 1000 ℃ via a simple chemical co-precipitation method.The effects of the concentrations of Sn doped on the structures and magnetic properties of the samples have been investigated.A systematic variation from monoclinic to orthorhombic FeNbO4 structure was observed with increasing Sn content.The phase evolutions were observed from monoclinic structure with x=0.50 to the coexistence of monoclinic and orthorhombic structures with x=0.48,0.47,0.46,and then to orthorhombic structure with x=0.45.Antiferromagnetic behavior was observed for all the samples,and the magnetic ordering temperatures decrease with increasing Sn concentration,which further indicated the sequence of phase transitions.The results suggest that the incorporation of Sn can stabilize the orthorhombic FeNbO4.  相似文献   

4.
The dynamics of electron solvation following excitation of the charge-transfer-to-solvent precursor state in iodide-doped methanol clusters, I(-)(CH(3)OH)(n = 4-11), are studied with time-resolved photoelectron imaging. This excitation produces a I···(CH(3)OH)(n)(-) cluster that is unstable with respect to electron autodetachment and whose autodetachment lifetime increases monotonically from ~800 fs to 85 ps as n increases from 4 to 11. The vertical detachment energy (VDE) and width of the excited state feature in the photoelectron spectrum show complex time dependence during the lifetime of this state. The VDE decreases over the first 100-400 fs, then rises exponentially to a maximum with a ~1 ps time constant, and finally decreases by as much as 180 meV with timescales of 3-20 ps. The early dynamics are associated with electron transfer from the iodide to the methanol cluster, while the longer-time changes in VDE are attributed to solvent reordering, possibly in conjunction with ejection of neutral iodine from the cluster. Changes in the observed width of the spectrum largely follow those of the VDEs; the dynamics of both are attributed to the major rearrangement of the solvent cluster during relaxation. The relaxation dynamics are interpreted as a reorientation of at least one methanol molecule and the disruption and formation of the solvent network in order to accommodate the excess charge.  相似文献   

5.
The electron paramagnetic resonance (EPR) properties of the electron-doped manganite La(1-x)Te(x)MnO(3) (0.1 ≤ x ≤ 0.2) are investigated based on the data of EPR spectra, resistivity, and magnetic susceptibility. With decreasing temperature from 400 K, the EPR linewidth ΔH(PP) decreases and passes through a minimum at T(min), then substantially increases with further decreasing temperature. The broadening of the EPR linewidth above T(min) can be understood in terms of the increase in the relaxation rate of spin of e(g) polarons to the lattice with increasing temperature due to the similarity between the temperature dependence of the linewidth ΔH(pp)(T) and the conductivity σ(T). For the samples with x = 0.1 and 0.15, the conductivity activation energy E(σ) is comparable with the activation energy E(a) deduced from the linewidth. Whereas for the x = 0.2 sample, there is a large difference between E(σ) (0.2206 eV) and E(a) (0.0874 eV).  相似文献   

6.
A series of solid solutions of polar aluminoborate materials, Al(5-x)Ga(x)BO(9) (0.0 ≤x≤ 0.5) have been synthesized by standard solid-state reactions using Al(2)O(3), Ga(2)O(5), and B(OH)(3) as reagents. The phase purities, crystal structures, and solid solution behavior of the reported materials have been investigated by powder X-ray diffraction. Solid solutions of Al(5-x)Ga(x)BO(9) crystallize in the polar noncentrosymmetric space group, Cmc2(1), with a three-dimensional structure consisting of distorted MO(4), MO(5), MO(6), and BO(3) polyhedra (M = Al or Ga). Powder second-harmonic generating (SHG) measurements on the Al(5)BO(9) using 1064 nm radiation, indicate the material has a SHG efficiency of approximately 2 times that of α-SiO(2) and is not phase-matchable (type 1). Further nonlinear optical (NLO) measurements on the Al(5-x)Ga(x)BO(9) solid solutions indicate a sharp increase in SHG efficiency up to 10 times that of α-SiO(2) for x≥ 0.4. Close structural examination suggests that the alignment of the asymmetric π-delocalization of BO(3) groups is responsible for the abrupt increase of SHG efficiency.  相似文献   

7.
Reduction of La(1-x)Ca(x)MnO(3) (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La(1-x)Ca(x)MnO(2+δ). The calcium-rich phases (x = 0.9, 1) adopt (La(0.9)Ca(0.1))(0.5)Mn(0.5)O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO(6) octahedra and sheets of MnO(4) tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La(1-x)Ca(x)MnO(2+δ) phases with x < 1. Low-temperature neutron diffraction data reveal La(1-x)Ca(x)MnO(2+δ) (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.  相似文献   

8.
Porous spinel ferrites Mn(1-x)Zn(x)Fe(2)O(4) (0 ≤ x ≤ 0.8) are synthesized by a simple sol-gel method with egg white. All samples exhibit porous morphologies and large BET surface area (S(BET)). The substitution of Zn(2+) affects the magnetic properties of ferrites and the adsorption properties of methylene blue (MB) on ferrites, obviously. The saturation magnetization (Ms) of Mn(1-x)Zn(x)Fe(2)O(4) increases before x=0.4, and decreases with further increase of Zn(2+) substitution. This can be ascribed to the changes of the cationic distribution and the variation of spin arrangement in A-site and B-site of spinel structure. All samples show high adsorption capacity and the removal efficiencies of MB reach up to >90% within 3 h. The Zn(2+) substitution accelerates the adsorption rate and capacity of MB on Mn(1-x)Zn(x)Fe(2)O(4). The quickest adsorption occurred at x=0.2 and the largest adsorption capacity occurred at x=0.8.  相似文献   

9.
In this work, high pressure was used as a tool to induce structural transition and prepare metastable polymorphs of ternary sulfides. Structural transformations under high pressure of compounds belonging to the Ba(2)Co(1-x)Zn(x)S(3) (0 ≤ x ≤ 1.0) series were studied using X-ray diffraction and electron microscopy. All members of the Ba(2)Co(1-x)Zn(x)S(3) series show the Ba(2)CoS(3)-type one-dimensional structure, but, after heating under pressure, the Ba(2)CoS(3) compound (x = 0) separates into BaS and the two-dimensional BaCoS(2-δ) (δ ≈ 0), while Ba(2)Co(1-x)Zn(x)S(3) compounds with x ≥ 0.25 maintain their one-dimensional features but rearrange into polymorphs showing the Ba(2)MnS(3)-type structure. All structural transformations can be linked to shortening in interchain metal-metal distances caused by the high pressure, and the role of the zinc in preventing loss of one-dimensionality is discussed.  相似文献   

10.
使用复杂晶体化学键理论计算了La1-xNdxCrO3 (x =0 .0 ,0 .2 ,0 .4,0 .6 ,0 .8,1.0 )的化学键参数 ,如键性、键极化率等。结果表明 ,La-O ,Nd -O和Cr-O键的共价性基本上不随Nd掺杂的变化而变化 ,这个结论与实验结果一致。键极化率和磁距则随着掺杂量的增加而增加。共价性的大小次序为La -O 相似文献   

11.
The tellurides Tl(10-x)La(x)Te(6) were synthesized from the elements in stoichiometric ratios at 873 K, followed by slow cooling. These materials are substitution variants of Tl(5)Te(3), crystallizing in space group I4/mcm, with lattice dimensions of a = 8.9220(4) ?, c = 13.156(1) ?, V = 1047.2(1) ?(3), for x = 1 (Z = 2). Increasing the La content occurs with an increase in the unit cell volume and the c axis, but a decrease of the a axis. Tl(5)Te(3) is a metallic compound, while Tl(9)LaTe(6) was calculated to be semiconducting. Correspondingly, the Seebeck coefficient increases with increasing x, while the electrical and thermal conductivity both decrease. The highest thermoelectric figure-of-merit determined thus far is 0.21 at 581 K for cold-pressed Tl(9)LaTe(6).  相似文献   

12.
We investigate anew the possible equilibrium geometries of ion induced dipole clusters of hydrogen molecular ions, of molecular formula H(n)(-) (3 ≤ n-odd ≤ 13). Our previous publications [Sapse, A. M.; et al. Nature 1979, 278, 332; Rayez, J. C.; et al., J. Chem. Phys. 1981, 75, 5393] indicated these molecules would have a shallow minimum and adopt symmetrical geometries that accord with the valence shell electron pair repulsion (VSEPR) rules for geometries defined by electron pairs surrounding a central point of attraction. These earlier calculations were all based upon Hartree-Fock (HF) calculations with a fairly small basis of atomic functions, except for the H3(-) ion for which configuration interaction (CI) calculations were carried out. A related paper [Hirao, K.; et al., Chem. Phys. 1983, 80, 237] carried out similar calculations on the same clusters, finding geometries similar to our earlier calculations. However, although that paper argued that the stabilization energy of negative ion clusters H(n)(-) is small, vibration frequencies for the whole set of clusters was not reported, and so a definitive assertion of a true equilibrium was not present. In this paper we recalculate the energetics of the ion induced dipole clusters using density function theory (DFT) B3LYP method calculations in a basis of functions (6-311++G(d,p)). By calculating the vibration frequencies of the VSEPR geometries, we prove that in general they are not true minima because not all the resulting frequencies correspond to real values. By searching the energy surface of the B3LYP calculations, we find the true minimum geometries, which are surprising configurations and are perhaps counterintuitive. We calculate the total energy and binding energy of the new geometries. We also calculate the bond paths associated with the quantum theory of atoms in molecules (QTAIM). The B3LYP/6-311++G(d,p) results, for each molecule, deliver bond paths that radiate between each polarized H2 molecule and the polarizing H(-) ion.  相似文献   

13.
The binding energy, equilibrium geometry, and vibration frequencies of free clusters Cu n (2 ≤ n ≤ 20) are calculated using the potentials of interatomic interactions found using the tight-binding approximation. The nonmonotonic dependence of the clusters’ minimum vibration frequency on their sizes and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 is demonstrated. It is noted that this result agrees with the theoretical and experimental data on stable structures of small and medium metallic clusters.  相似文献   

14.
《印度化学会志》2021,98(8):100100
This work reports a combined theoretical and experimental study on large phenol-acetylene clusters, Ph(Ac)n, 8 ​≤ ​n ​≤ ​12, extending our earlier work on the smaller clusters [Singh, G.; Nandi, A.; Gadre, S. R.; Chiba, T.; Fujii, A. J. Chem. Phys. 2017, 146, 154303]. Several trial cluster geometries are generated using the molecular electrostatic potential (MESP) for placing additional acetylene moieties, followed by geometry optimization at B97D/aug-cc-pVDZ level theory. The infrared spectra of energetically low-lying (within 0.5 ​mH window) isomers of the clusters are calculated and averaged. The O–H stretching band shows two peaks due to the presence of energetically close isomers differing in the arrangement of acetylenes around the O–H group. The acetylenic C–H stretching band appears around 3260 ​cm−1. The C–H band shows a red shift of about 3 ​cm−1 on going from n ​= ​8 to 12. Moderately size-selected IR spectra of Ph(Ac)n (n ​= ​~10 and ~13) prepared by a supersonic jet expansion are measured for the acetylenic C–H region by infrared-ultraviolet double resonance spectroscopy combined with time-of-flight mass spectrometry. The observed spectral features are in agreement with the trends of the frequency shift and asymmetric line shape of the C–H stretch band predicted by the theoretical calculations.  相似文献   

15.
The [Ni-(H(2)O)(n)](2+)(H(2)O)(m) (n ≤ 6, m ≤ 18) complexes were studied by means of first-principles all-electron calculations performed with the BPW91 gradient corrected functional and the 6-311+G(d,p) basis sets for the H, O, and Ni atoms. Triplet states were found as low-lying states for each (n, m) combination. The estimated Ni(2+)-(H(2)O)(n) binding energies (112.8-57.4 kcal/mol for the first layer and 52.0-23.0 kcal/mol for the second one) decreases and the Ni(2+)-OH(2) bond lengths lengthen as n + m increases. With six H(2)O moieties the Ni(2+) ion furnishes its first coordination sphere of octahedral geometry. Further water addition renders the formation of the second layer. The effect of Ni(2+) on the (H(2)O)(n)···(H(2)O)(m) hydrogen bond formation for several "n" and "m" combinations was studied, revealing an enhancement of this kind of bonding, which is of key importance for the stabilization and growth of the clusters. For some n + m isomers the second layer appears before the first octahedral layer is fully formed. For example, the square planar Ni(2+)-(H(2)O)(4) core originates two-dimensional 4 + 2 and 4 + 4 isomers, where each outer water molecule accepts two H-bonds, lying 2.0 kcal/mol above the 6 and 6 + 2 ground states. The clusters were also studied by IR spectra; the OH stretching vibrational frequencies allowed us to identify the outer solvation shells by the presence of red-shifted hydrogen bond regions.  相似文献   

16.
Lu J  Dai Y  Guo M  Wei W  Ma Y  Han S  Huang B 《Chemphyschem》2012,13(1):147-154
As an excellent bandgap-engineering material, the Cd(1-x)Zn(x)S solid solution, is found to be an efficient visible light response photocatalyst for water splitting, but few theoretical studies have been performed on it. A better characterization of the composition dependence of the physical and optical properties of this material and a thorough understanding of the bandgap-variation mechanism are necessary to optimize the design of high-efficience photocatalysts. In order to get an insight into these problems, we systematically investigated the crystal structure, the phase stability, and the electronic structures of the Cd(1-x)Zn(x)S solid solution by means of density functional theory calculations. The most energetically favorable arrangement of the Cd, Zn, S atoms and the structural disorder of the solid solution are revealed. The phase diagram of the Cd(1-x)Zn(x)S solid solution is calculated based on regular-solution model and compared with the experimental data. This is the first report on the calculated phase diagram of this solid solution, and can give guidance for the experimental synthesis of this material. Furthermore, the variation of the electronic structures versus x and its mechanism are elaborated in detail, and the experimental bandgap as a function of x is well predicted. Our findings provide important insights into the experimentally observed structural and electronic properties, and can give theoretical guidelines for the further design of the Cd(1-x)Zn(x)S solid solution.  相似文献   

17.
We report infrared spectra of phenol-(H(2)O)(n) (~20 ≤ n ≤ ~50) in the OH stretching vibrational region. Phenol-(H(2)O)(n) forms essentially the same hydrogen bond (H-bond) network as that of the neat water cluster, (H(2)O)(n+1). The phenyl group enables us to apply the scheme of infrared-ultraviolet double resonance spectroscopy combined with mass spectrometry, achieving the moderate size selectivity (0 ≤ Δn ≤ ~6). The observed spectra show clear decrease of the free OH stretch band intensity relative to that of the H-bonded OH band with increasing cluster size n. This indicates increase of the relative weight of four-coordinated water sites, which have no free OH. Corresponding to the suppression of the free OH band, the absorption peak of the H-bonded OH stretch band rises at ~3350 cm(-1). This spectral change is interpreted in terms of a signature of four-coordinated water sites in the clusters.  相似文献   

18.
The interaction of ammonia with Ben (n < 1–10) clusters has been investigated by density functional theory and ab initio calculations. The main conclusion is that, regardless of the size of the Be cluster, neither the structure of ammonia nor that of the Be clusters are preserved due to a systematic dissociation of its N H bonds and a spontaneous H-shift toward the available Be atoms. This H migration not only leads to rather stable Be H bonds, but dramatically enhances the strength of the Be N bonds as well. Accordingly, the maximum stability is found for the interaction with the beryllium trimer, leading to a complex with three N Be and three Be H bonds. Another maximum in stability, although lower than that reached for n = 3, is found for the Be heptamer, since from n = 6, a new N Be bond is formed, so that complexes from n = 6 to n = 10 are characterized by the formation of a NBe4 moiety, whose stability reaches a maximum at n = 7. The bonding characteristics of the different species formed are analyzed by means of AIM, NBO, ELF and AdNDP approaches.  相似文献   

19.
Al2-Al40 clusters were studied by means of the all-electron DFT method.The properties of the aluminum clusters including binding energy,the second difference in energy,HOMO-LUMO gap,especially fragmentation energies and ionization potentials,were analyzed.The main products from the dissociations of aluminum cluster ions are shown to be Al+Al+n-1 for the larger clusters,and Al++Aln-1 for the smaller ones.And,the calculated ionization potentials are consistent with the experiment data.  相似文献   

20.
The properties of Pbn(n=2―30) clusters including binding energies,second differences in energy,and HOMO-LUMO gaps,especially fragmentation energies and ionization potentials,have been studied by ab initio calculation.The main fragmentation products of Pbn+ are shown to be Pb+Pbn-1+ for n≤14 and two small cluster fragments for larger ones with n14.The Pb13+ appears frequently as the products in the fragmentations of large clusters.Also,the calculated ionization potentials of the clusters are consistent with the experiment data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号