首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition of the volatile oil of the common juniper (Juniperus communis L.) from Estonia was analyzed by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The yield and composition of the oil obtained by different methods (micro-distillation and extraction, SDE, and supercritical carbon dioxide extraction, SFE) from various parts of juniper (berries, needles) were compared. The oil yield ranged from 0.7 to 2.1%. The content of α-pinene of juniper-berry essential oil was 47.9, that of juniper needleoil, 36.4%. The oil yields and composition obtained by SDE and SFE from juniper needles were similar. The oil obtained by SFE from juniper berries contained more sesquiterpenes and high boiling compounds than that obtained by SDE.  相似文献   

2.
The medicinal potential and volatile composition of different parts of three cultivars of grapefruit (Citrus paradisi) were evaluated for their toxicity and anti-inflammatory activities. Fresh leaf and fruit peel were separately isolated by hydrodistillation for 4 h. The essential oils were subjected to GC/GC-MS analysis for chemical profile. Toxicity of the essential oils in mice were evaluated using Lorke’s method, while an anti-inflammatory assay was performed in a rat model using egg albumin-induced oedema. The oils obtained were light yellow in colour, and odour varied from strong citrus smell to mild. Percentage yield of fresh peel oil (0.34–0.57%) was greater than the fresh leaf oil yield (0.21–0.34%). D-limonene (86.70–89.90%) was the major compound identified in the leaf oil, while β-phellandrene (90.00–91.01%) dominated the peel oil. At a dosage level of 5000 mg/kg, none of the oils showed mortality in mice. An anti-inflammatory bioassay revealed that all the oils caused a significant (p < 0.05–0.01) reduction in oedema size when compared to the negative control group throughout the 5 h post induction assessment period. The study reveals that the oils are non-toxic and demonstrate significant anti-inflammatory activity. Our findings suggest that the leaf and peel oils obtained from waste parts of grapefruit plants can be useful as flavouring agents, as well as anti-inflammatory agents.  相似文献   

3.
Approximately 9% of the 9.7 billion bushels of corn harvested in the United States was used for fuel ethanol production in 2002, half of which was prepared for fermentation by dry grinding. The University of Illinois has developed a modified dry grind process that allows recovery of the fiber fractions prior to fermentation. We report here on conversion of this fiber (Quick Fiber [QF]) to ethanol. QF was analyzed and found to contain 32%wt glucans and 65%wt total carbohydrates. QF was pretreated with dilute acid and converted into ethanol using either ethanologenic Escherichia coli strain FBR5 or Saccharomyces cerevisiae. For the bacterial fermentation the liquid fraction was fermented, and for the yeast fermentation both liquid and solids were fermented. For the bacterial fermentation, the final ethanol concentration was 30 g/L, a yield of 0.44 g ethanol/g of sugar(s) initially present in the hydrolysate, which is 85% of the theoretical yield. The ethanol yield with yeast was 0.096 gal/bu of processed corn assuming a QF yield of 3.04 lb/bu. The residuals from the fermentations were also evaluated as a source of corn fiber oil, which has value as a nutraceutical. Corn fiber oil yields were 8.28%wt for solids recovered following prtetreatment.  相似文献   

4.
《Comptes Rendus Chimie》2016,19(7):890-894
Essential oils from fresh aerial parts of Hemizygia bracteosa (Benth.) Briq. were extracted by steam distillation. The oil yield from plants collected during the hot season (February) and during the cold season (August) were 0.12 ± 0.01% and 0.25 ± 0.02%, respectively. GC/FID and GC/MS analyses allowed us to identify a total of 65 compounds, representing 97% of the hydrodistillate. The main components of the oil from the hot period were (E)-β-farnesene (64 ± 0.04%), β-elemene (7.4 ± 0.05%), trans-nerolidol (6.2 ± 0.04%), and α-muurolene (2.7 ± 0.03%). The essential oil from the cold season was characterized by the presence, as major compounds, of (E)-β-farnesene (67 ± 0.04%) along with β-caryophyllene (3.6 ± 0.06%), β-elemene (3.3 ± 0.05%), 7-epi-α-selinene (3.1 ± 0.01%) and p-cymene (2.5 ± 0.04%). This is the first report of these components in the essential oil of Hemizygia bracteosa (Benth.) Briq.  相似文献   

5.
The composition of the volatile components from Rosa damascena Mill. was investigated using comprehensive two-dimensional gas chromatography with time of flight mass spectrometry (TOF/MS). The samples were collected from Turkey and were extracted by water distillation (WD), superheated water extraction (SWE) and direct thermal desorption (DTD). It was found that superheated water extraction gave a slightly higher oil yield than water distillation. The major compounds found in volatiles of R. damascena Mill. were linalool, phenylethylalcohol, citronellol, nerol and geraniol. Phenylethylalcohol content was significantly higher using the DTD (36.52%) and SWE (38.14%) techniques compared to the WD (1.92%) technique. A lower content of monoterpene alcohols was found in volatiles extracted using the DTD method (73.69%) compared to the SWE (86.51%) and WD (86.56%) techniques reflecting the main finding that DTD extracts showed a greater total number of different components than either of the other two methods. The number of volatile components identified with a percentage higher than 0.05% were 54, 37, and 34 for the DTD, SWE and WD techniques, respectively. This highlighted DTD as a promising method for qualitative analysis of rose oil which can yield comprehensive results without the traditional obligation for costly and time consuming extraction techniques.  相似文献   

6.
In this present investigation, Cassia auriculata was explored as a feedstock for production of biodiesel. Transesterification reaction was performed by both enzyme (lipase) and chemical (potassium hydroxide) catalyst with diverse acyl acceptors such as methanol, ethanol, propanol, n-propanol, butanol, n- butanol, and finally their biodiesel yield were also recorded. Process optimization was performed by both one factor at a time method and response surface method. The maximal biodiesel yield of 92% (weight/weight) was obtained at the following optimal conditions: Oil:Methanol molar ratio of 1:6 (moles/moles), the lipase concentration of 2% (weight/weight), at 35 ?°C and 120 ?min. The highest biodiesel yield from Cassia auriculata oil was occurred with excess methanol that aids the equilibrium shift in the forward direction. The kinetics of the transesterification reaction was investigated under optimal conditions and the activation energy was found to be 14.91 ?kJ/mol. Simultaneously Gas Chromatography – Mass Spectroscopy was also carried out for the biodiesel produced from Cassia auriculata and the same has been reported. The GC analysis declares the existence of fatty acid esters like hexadecanoic acid methyl ester, methyl stearate and the peak with retention time 12.8 ?min signifies the evidence of hexadecanoic acid methyl ester with 28% of yield content. This investigation also evaluated the biodiesel quality produced from lipase-transesterified Cassia auriculata oil based on fuel properties. Biodiesel properties Flash Point (FC), Pour Point (PP) and kinematic viscosity were compared with American (ASTM 6751) and European (EN 14214) Standards. Cassia auriculata oil had PP 6.7 ?°C and Kinematic viscosity (813 ?kg/m3) that agreed with both the standards. Thus this study showed that Cassia auriculata oil could be a better fuel alternative with further improvement of fuel properties.  相似文献   

7.
The essential oil of Kaempferia galanga L. commonly known as sand ginger has increased its demand in national and international market for decades. Cinnamic acid esters like ethyl-p-methoxy cinnamate (EPMC) and ethyl cinnamate (EC) are major constituents in its essential oil. In spite of the high demand for the plant as raw material, identification of quality chemovars having high essential oil (EO) yield and constituents is still at an infant stage. With this in mind, we have evaluated the EO yield of 36 accessions from three provinces of Eastern India, which varied within a range of 0.41 ± 0.01 to 2.63 ± 0.03 v/w. Further, a total of 65 compounds were detected by gas chromatography and mass spectrometry (GC-MS) with area percentages varying from 76.16 to 97.3%. EPMC was found to be the major component in 14 accessions with area percentages varying from 10.7% to 41.1%, whereas other 22 accessions showed EC as the major constituent, varying from 16% to 29.1%. Further, a diversity study among accessions was performed by agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) analysis based on the abundance of identified constituents, which categorized all 36 accessions into three clusters. Thus, the present study helps to identify quality chemovar K.g16 and K.g14 with respect to oil yield and constituents, respectively, which could be used to guide commercial cultivation and further improvement of the taxa.  相似文献   

8.
The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.  相似文献   

9.
Cistus ladanifer is a Mediterranean native plant from which valuable products, such as essential oil, are obtained. Manual harvesting of the plants in wild shrublands is usual during short periods of time. Their mechanised harvesting could increase the volume of harvested plants and prevent fires, further storage of the plants collected being necessary. The objective of this work is to study the influence of the storage period of mechanically harvested bales on the essential oil yield and qualitative composition. The harvesting trials were carried out with an adapted commercial harvester baler and the storage of the bales was performed indoors during 1–7 days, 15–30 days and 100–120 days. Afterwards, the bales were crushed (30 mm) and distilled in a 30 litre stainless steel still with saturated steam (0.5 bar). The essential oil components were identified by GC-MS and quantified by GC-FID. The storage of mechanically harvested Cistus ladanifer does not decrease the oil yield of steam distillation on a pilot scale. However, it leads to differences in the quantitative composition of the essential oils, decreasing the total monoterpene compounds content and increasing that of oxygenated sesquiterpenes, especially when the biomass is stored for 100–120 days, without affecting its qualitative composition.  相似文献   

10.
By-products from fruits and are of great interest for their potential use in the food industry due to their high content of bioactive compounds. Herein, we examined the ultrasound-assisted extraction (UAE) of carotenoid and carotenoid esters from papaya pulp and peel using soybean oil and sunflower oil as alternative green solvents. Response surface methodology (RSM) was established to optimize the UAE process. Three independent variables, ultrasonic amplitude (20–60%), time (10–60 min), and co-solvent percentage (ethanol) (5–20%, v/v), were applied. The highest total carotenoid content in the UAE extracts was obtained from papaya pulp extracts (58.7 ± 1.6 and 56.0 ± 1.5 μg carotenoids/g oil) using soybean oil and sunflower oil, respectively (60% amplitude/ 10 min/ 20% ethanol). On the other hand, the highest carotenoid content (52.0 ± 0.9 μg carotenoids/g oil) was obtained from papaya peel using soybean oil applying the UAE process (20% amplitude/ 77 min/ 20% ethanol); a minor content of 39.3 ± 0.5 μg carotenoids/g oil was obtained from papaya peel using sunflower oil at 60% amplitude/ 60 min/ 5% ethanol. Lycopene was the most abundant carotenoid among all individual carotenoids observed in papaya oil extracts, obtaining the highest yields of this carotenoid when papaya pulp and peel were extracted using soybean oil (94% and 81%, respectively) and sunflower oil (95% and 82%, respectively). Great extraction of xanthophyll esters was detected using 20% of ethanol in the vegetable oil extraction solvent (v/v). High correlations (>0.85) was obtained between total carotenoid content and color determination in the UAE oil extracts. UAE vegetable oil extracts enriched with carotenoids from papaya by-products could be useful to formulate new food ingredients based on emulsions with interesting potential health benefits.  相似文献   

11.
The composition of essential oils of the leaves and stems of the Aegopodium podagraria growing wild in Estonia was determined using gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 69 compounds representing over 95% of the total oil were identified. The oil from the stems of A. podagraria was rich in monoterpenes (92.0%). In the leaves oil mainly monoterpenes (43.8%) and sesquiterpenes (29.8%) were identified. The total and extractable content of six mineral elements and two trace elements of the leaves and stems of A. podagraria were determined by atomic absorption spectroscopy (AAS). Capillary electrophoresis (CE) was employed in the fingerprint analysis of A. podagraria extracts.  相似文献   

12.
Thymus linearis (Benth. ex Benth) was collected from five distinct locations of western Himalaya (India) during the summer season. The hydro-distilled essential oil (yield 0.84-0.95%) was analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 56 constituents, representing 81.55% to 98.11% of the total oil composition, were identified. Thymol (52.28-66.65%), p-cymene (1.81-21.60%) and γ-terpinene (1.94-12.48%) were the major constituents in all populations. Other constituents identified in significant amounts were carvacrol, p-cymen-8-ol, borneol, terpinen-4-ol and thymol methyl ether. The presence of high phenol and essential oil contents in this species make it a suitable substitute for common thyme oil.  相似文献   

13.
Sage, Salvia officinalis L., is used worldwide as an aromatic herb for culinary purposes as well as a traditional medicinal agent for various ailments. Current investigations exhibited the effects of extended dryings of the herb on the yields, composition, oil quality, and hepatoprotective as well as anti-cancer biological activities of the hydrodistillation-obtained essential oils from the aerial parts of the plant. The essential oils’ yields, compositions, and biological activities levels of the fresh and differently timed and room-temperature dried herbs differed significantly. The lowest yields of the essential oil were obtained from the fresh herbs (FH, 631 mg, 0.16%), while the highest yield was obtained from the two-week dried herbs (2WDH, 1102 mg, 0.28%). A notable decrease in monoterpenes, with increment in the sesquiterpene constituents, was observed for the FH-based essential oil as compared to all the other batches of the essential oils obtained from the different-timed dried herbs. Additionally, characteristic chemotypic constituents of sage, i.e., α-pinene, camphene, β-pinene, myrcene, 1, 8-cineole, α-thujone, and camphor, were present in significantly higher proportions in all the dried herbs’ essential oils as compared to the FH-based essential oil. The in vivo hepatoprotective activity demonstrated significant reductions in the levels of AST, ALT, and ALP, as well as a significant increase in the total protein (p < 0.05) contents level, as compared to the acetaminophen (AAP) administered experimental group of rats. A significant reduction (p < 0.05) in the ALT level was demonstrated by the 4WDH-based essential oil in comparison to the FH-based essential oil. The levels of creatinine, cholesterol, and triglycerides were reduced (p < 0.05) in the pre-treated rats by the essential oil batches, with non-significant differences found among them as a result of the herbs dryings based oils. A notable increase in the viability of the cells, and total antioxidant capacity (TAOxC) levels, together with the reduction in malondialdehyde (MDA) levels were observed by the essential oils obtained from all the batches as compared with the AAP-treated cell-lines, HepG-2, HeLa, and MCF-7, that indicated the in vitro hepatoprotective effects of the sage essential oils. However, significant improvements in the in vivo and in vitro hepatoprotective activities with the 4WDH-based oil, as compared to all other essential oil-batches and silymarin standard demonstrated the beneficial effects of the drying protocol for the herb for its medicinal purposes.  相似文献   

14.
In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.  相似文献   

15.
Biodiesel is considered a sustainable alternative to petro-diesel owing to several favorable characteristics. However, higher production costs, primarily due to the use of costly edible oils as raw materials, are a chief impediment to its pecuniary feasibility. Exploring non-edible oils as raw material for biodiesel is an attractive strategy that would address the economic constraints associated with biodiesel production. This research aims to optimize the reaction conditions for the production of biodiesel through an alkali-catalyzed transesterification of Tamarindus indica seed oil. The Taguchi method was applied to optimize performance parameters such as alcohol-to-oil molar ratio, catalyst amount, and reaction time. The fatty acid content of both oil and biodiesel was determined using gas chromatography. The optimized conditions of alcohol-to-oil molar ratio (6:1), catalyst (1.5% w/w), and reaction time 1 h afforded biodiesel with 93.5% yield. The most considerable contribution came from the molar ratio of alcohol to oil (75.9%) followed by the amount of catalyst (20.7%). In another case, alcohol to oil molar ratio (9:1), catalyst (1.5% w/w) and reaction time 1.5 h afforded biodiesel 82.5% yield. The fuel properties of Tamarindus indica methyl esters produced under ideal conditions were within ASTM D6751 biodiesel specified limits. Findings of the study indicate that Tamarindus indica may be chosen as a prospective and viable option for large-scale production of biodiesel, making it a substitute for petro-diesel.  相似文献   

16.
The essential oil of Nepeta satureioides Boiss. from Iran was isolated by hydrodistillation in yield of 0.06% (w/w). The chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-five compounds accounting for 97.4% of the total oil were identified. The major components were linalool (23.8%), (Z,E)-farnesol (14.7%), linalyl acetate (11.1%), β-caryophyllene (6.6%), lavandulol acetate (6.6%), caryophyllene oxide (6.4%), and (Z)-β-farnesene (3.4%). Oxygenated terpenoids were the main group of compounds. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 144–145, March–April, 2006.  相似文献   

17.
Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11–21 MPa), temperature (40–60 °C), and co-solvent contribution (5–15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.  相似文献   

18.
Cunninghamella blakesleeana- JSK2, a gamma-linolenic acid (GLA) producing tropical fungal isolate, was utilized as a tool to evaluate the influence of various plant seed oils on biomass, oleagenicity and bio-fuel production. The fungus accumulated 26 % total lipid of their dry biomass (2 g/l) and 13 % of GLA in its total fatty acid. Among the various plant seed oils tested as carbon sources for biotransformation studies, watermelon oil had an effect on biomass and total lipid increasing up to 9.24 g/l and 34 % respectively. Sunflower, pumpkin, and onion oil increased GLA content between 15–18 %. Interestingly, an indigenous biodiesel commodity, Pongamia pinnata oil showed tremendous effect on fatty acid profile in C. blakesleeana- JSK2, when used as a sole source of carbon. There was complete inhibition of GLA from 13 to 0 % and increase in oleic acid content, one of the key components of biodiesel to 70 % (from 20 % in control). Our results suggest the potential application of indigenous plant seed oils, particularly P. pinnata oil, for the production of economically valuable bio-fuel in oleaginous fungi in general, and C. blakesleeana- JSK2, in particular.  相似文献   

19.
孜然精油的提取及其清除DPPH自由基能力研究   总被引:3,自引:1,他引:3  
在光、热以及氧气存在下,物质化学键断裂,生成高反应活性的自由基或者过氧化物,导致食品变质,商品变性,质量下降。为了保证食品质量与安全,保证产品不变质,添加抗氧化剂是常用的方法。随着人们环保意识的提高,越来越倾向于用天然抗氧化剂取代合成抗氧化剂。当使用天然抗氧化剂,  相似文献   

20.
The essential oil obtained by steam distillation of dried aerial parts of Ambrosia trifida L. from Northeast China was analyzed by GC and GC-MS. The essential oil yield based on dried plant material was 0.12% and thirty-five compounds (corresponding to 86.7% of the total weight) were identified. The main components were: bornyl acetate (15.5%), borneol (8.5%), caryophyllene oxide (8.3%), alpha-pinene (8.0%), germacrene D (6.3%), beta-caryophyllene (4.6%), trans-carveol (2.9%), beta-myrcene (2.6%), camphor (2.4%) and limonene (3.2%). A. trifida essential oil demonstrated bactericidal and fungicidal activity against six bacterial strains and two fungal strains, using the agar diffusion method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号