首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission and UV-vis absorption spectra of (hydrotris(pyrazolyl)borato)(triphenylarsine)copper(I), (CuTpAsPh3), (hydrotris(pyrazolyl)borato)(triethylamine)copper(I), (CuTpNEt3), and (hydrotris(pyrazolyl)borato)(triphenylphosphine)copper(I), (CuTpPPh3), are reported. The spectra of the arsine complex contain low-energy bands (with a band maximum at 16,500 cm(-1) in emission and a weak shoulder centered at about 25,000 cm(-1) in absorption) that are not present in the corresponding spectra of the amine or phosphine complexes. The lowest energy electronic transition is assigned to ligand to ligand charge transfer (LLCT) with some contribution from the metal. This assignment is consistent with PM3(tm) molecular orbital calculations that show the HOMO to consist primarily of pi orbitals on the Tp ligand (with some metal orbital character) and the LUMO to be primarily antibonding orbitals on the AsPh3 ligand (also with some metal orbital character). The absorption shoulder shows a strong negative solvatochromism, indicative of a reversal or rotation of electric dipole upon excitation, and consistent with a LLCT. The trends in the energies of the electronic transitions and the role of the metal on the LLCT are discussed.  相似文献   

2.
The ground geometrical and electronic structures, charge transfer (CT) behaviors, absorption, and emission properties of the three copper(I) complexes [Cu(pypz)(POP)]+ (1) , [Cu(pympz)(POP)]+ (2) , and [Cu(pytfmpz)(POP)]+ (3) (pypz=1‐(2‐pyridyl)pyrazole, pympz=3‐methyl‐1‐(2‐pyridyl)pyrazole, and pytfmpz=3‐trifluoromethyl‐1‐(2‐pyridyl)pyrazole), have been investigated using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT). The vertical absorption energies of the all copper(I) complexes are well reproduced by TD‐DFT calculations based on the CT amount calculations. The triplet emission properties of the all copper(I) complexes were correctly evaluated at BMK/LANL2DZ/6‐31G* level of theory. In addition, the thermally activated delayed fluorescence properties of 1–3 were discussed in detail based on the spatial separation of the HOMO and LUMO and vertical excited energies. These theoretical insights should be expected to provide some guides for the design and synthesis of efficient luminescent copper(I) complexes. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The ligand bis(diphenylphosphino)isopropylamine (dppipa) has been shown to be a versatile ligand sporting different coordination modes and geometries dictated by copper(I). Most of the molecular structures were confirmed by X-ray crystallography. It is found in a chelating mode, in a monomeric complex when the ligand to copper ratio is 2:1. A tetrameric complex is formed when low ratios of ligand to metal (1:2) were used. But with increasing ratios of ligand to metal (1:1 and 2:1), a trimer or a dimer was obtained depending on the crystallization conditions. Variable temperature 31P{1H} NMR spectra of these complexes in solution showed that the Cu–P bond was labile and the highly strained 4-membered structure chelate found in the solid state readily converted to a bridged structures. On the other hand, complexes with the ligand in a bridging mode in the solid state did not form chelated structures in solution. The effect of adding tetra-alkylammonium salts to solutions of various complexes of dppipa were probed by 31P{1H} NMR and revealed the effect of counter ions on the stability of complexes in solution.  相似文献   

4.
A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.  相似文献   

5.
A series of copper(I) coordination complexes, CuI(Phen)[2-(Dpp)bp] (1) (Phen?=?phenanthroline, 2-(Dpp)bp?=?2-(Diphenylphosphino)-biphenyl), Cu2I2(Phen)[2-(Dpp)bp] (2), CuI(2-PBI)[2-(Dpp)bp] (3) and (2-PBI?=?2-(pyridin-2-yl)-1H-benzo[d]imidazole) and CuI(Bipy)[2-(Dpp)bp] (Bipy?=?2,2′-bipyridine) (4) have been synthesized. X-ray crystal structure studies revealed that complexes 1, 3 and 4 showed mononuclear structures with the copper atoms coordinated by iodide, a chelating nitrogen-donor ligand, and a monodentate phosphine ligand. However, the coordination centers display different distortions of their tetrahedral geometries, according to the steric hindrance of the bulky phosphine ligands. Complex 2 has a dinuclear structure, with trigonal and tetrahedral coordination centers. Variations in the aromatic system of the N-heterocyclic ligands result in different luminescence properties. Thus, the emission maxima for these complexes range from 580 to 642 nm, with lifetimes of τ?=?0.6–0.9 and 1.6–4.2 μs. TD-DFT calculations reveal the origin of the luminescence to be metal–ligand charge transfer, as well as halogen–ligand charge transfer. The optical absorption spectra and thermal stabilities of the complexes have also been studied.  相似文献   

6.
Density functional theory (DFT) calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of four iron(II) diimine complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. The energy of the orbitals correlates with electrochemical redox potentials of the complexes. Time-dependent density functional theory (TDDFT) calculations reveal ligand centered (LC) and metal-to-ligand charge transfer (MLCT) at higher energy than experimentally observed. TDDFT calculations also reveal the presence of d-d transitions which are buried under the MLCT and LC transitions. The difference in chemical and photophysical behavior of the iron complexes compared to that of their ruthenium analogues is also addressed.  相似文献   

7.
The first copper bis(selenosemicarbazone) complexes have been synthesized, using the ligands glyoxal bis(selenosemicarbazone), pyruvaldehyde bis(selenosemicarbazone), and 2,3-butanedione bis(selenosemicarbazone). Their spectroscopic properties indicate that they are structurally analogous to their well-known square-planar sulfur-containing counterparts, the copper bis(thiosemicarbazone) complexes. Spectroscopic comparison of the sulfur- and selenium-containing complexes provides insight into their electronic structure. The effects on spectroscopic and redox properties of replacing sulfur with selenium, and of successive addition of methyl groups to the ligand backbone, are rationalized in terms of their electronic structure using spin-unrestricted density functional calculations. These suggest that, like the sulfur analogues, the complexes have a very low-lying empty ligand-based pi-orbital immediately above the LUMO, while the LUMO itself has d(x2)-(y2) character (i.e., is the spin partner of the HOMO). Replacement of S by Se shifts the oxidation potentials much more than the reduction potentials, whereas alkylation of the ligand backbone shifts the reduction potentials more than the oxidation potentials. This suggests that oxidation and reduction involve spatially different orbitals, with the additional electron in the reduced species occupying the ligand-based pi-orbital rather than d(x2)-(y2). Density functional calculations on the putative singlet Cu(I)-reduced species suggest that this ligand pi-character could be brought about by distortion away from planarity during reduction, allowing the low-lying ligand pi-LUMO to mix into the d(x2)-(y2)-based HOMO. The analogy in the structure and reduction behavior between the sulfur- and selenium-containing complexes suggests that labeled with positron emitting isotopes of copper (Cu-60, Cu-62, Cu-64), the complexes warrant biological evaluation as radiopharmaceuticals for imaging of tissue perfusion and hypoxia.  相似文献   

8.
The quality of emission spectra of metal complexes gives good insights into their performance in many optoelectronic applications. Herein, the effect of the number and position of various ligand structures on the emission spectra of Ru bipyridine complexes was studied. Specifically, the use of a different number of withdrawing groups (COOH) was investigated in detail. The complexes were first investigated using density functional theory (DFT) and time‐dependent DFT calculations and then confirmed experimentally. The bandgap energy, reactivity, emission spectra and Stokes shift were found to depend on the number and position of the withdrawing groups attached to the Ru(bpy)22+ complexes. Upon increasing the number of withdrawing groups, the electrons were found to be withdrawn from the carbon orbitals and resonated to reach the metal, and accumulated around it, thus enhancing the metal‐to‐ligand charge transfer mechanism instead of the ligand‐to‐ligand charge transfer mechanism. The complexes with more withdrawing groups showed spectra with more intense emission peaks with shorter lifetime, indicating the enhancement in the photoactivity of the complexes. Ligands with ring nitrogens with two COOH groups showed the greatest effect on the enhancement of the emission spectra with a lifetime of 0.5359 ns. The resulting collective emission spectra covered a wide wavelength range, making the investigated complexes a good choice for many optoelectronic applications.  相似文献   

9.
A series of copper alkyls (methyl, ethyl and n-propyl) with ligands (2,2′-bipyridyl and tricyclohexylphosphine) and copper methyl without ligands has been prepared by the reaction of copper(II) acetylacetonate with dialkylaluminum monoethoxides in the presence or absence of the ligand in diethyl ether under nitrogen at low temperature. The copper alkyls were characterized by elemental analysis, chemical reactions, and by IR and NMR spectra. The ligand-free methylcopper is thermally very unstable and decomposed explosively; the bipyridyl ligand showed little effect on the stability of the copper alkyl. In contrast, the tricyclohexylphosphine-coordinated complexes are thermally very stable. Various reactions of the tricyclohexylphosphine-coordinated copper alkyls toward carbon dioxide, alkyl halides and olefins have been studied.  相似文献   

10.
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)3XL] (X = Br, Cl; L = 1-(4-5'-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethylbenzimidazol-2-yl)pyridine (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively. The lowest lying absorptions were calculated to be at 481, 493, and 486 nm for 1-3, respectively, and all have the transition configuration of HOMO-->LUMO. The lowest lying transitions can be assigned as metal/ligand-to-ligand charge transfer (MLCT/LLCT) character for 1, ligand-to-ligand charge transfer (LLCT) character for 2, and mixed MLCT/LLCT and intraligand pi-->pi* charge transfer (ILCT) character for 3. The emission of 1 at 551 nm has the MLCT/(3)LLCT character, 2 has the (3)MLCT/(3)LLCT character at 675 nm, and the 651 nm transition of 3 has the character of (3)MLCT/(3)LLCT/(3)ILCT. Ionization potentials (IP) and electron affinities (EA) calculations show that the comparable EA and smaller IP values and the relatively balanceable charges transfer ability of 2 with respect to 1 and 3 result in the higher efficiency of OLEDs. The calculated results show that the absorption and emission transition character and device's efficiency can be changed by altering the ancillary ligands.  相似文献   

11.
ABSTRACT

The straightforward synthesis of redox-active arylazothioformamide (ATF) ligands allows for electronic diversity as to measure the weak-binding interactions of transition metal salts in supramolecular coordination complexes. A small library of para-substituted ATFs was created with varied electronic components to evaluate how electron-donating and electron-withdrawing groups alter binding association constants. Following full characterisation, including single-crystal X-ray diffraction, UV-Vis titration studies were performed using copper(I) salts to assess the Host:Guest binding. Simultaneously, substitutions were evaluated computationally by modelling the Gibbs’ Free Energy change of the rotational barriers from ligand crystal structures to the predicted metal coordinating species and the various complexes. The multi-model association calculations and experimental measurements interplay to help limit error propagations and reliably predict the more accurate binding models. Through a thorough investigation it was found that experimentally, each ligand supports a 2:1 binding model yet may employ unique binding mechanisms to achieve that model.  相似文献   

12.
苯并咪唑金属铼(I)配合物的合成及发光性质的研究   总被引:1,自引:0,他引:1  
以过渡金属铼为中心金属离子,合成了2-(2-吡啶)苯并咪唑(HL1)和2,6-二(苯并咪唑)吡啶(HL2)配合物.该配合物荧光量子产率高、化学性质稳定,在固体状态下,最大发射峰分别是543 nm、577 nm,处在绿光和黄光区.其发光基理是基态金属离子电荷向激发态配体跃迁(MLCT),属于金属离子与配体间的dπ→π~*(L)的跃迁发光.  相似文献   

13.
The first examples of gold(I) trimethylsilylchalcogenolate complexes were synthesized and their reactivity showcased in the preparation of a novel gold–copper–sulfur cluster [Au4Cu4S4(dppm)2] (dppm=bis(diphenylphosphino)methane). The unprecedented structural chemistry of this compound gives rise to interesting optoelectronic properties, including long‐lived orange luminescence in the solid state. Through time‐dependent density functional theory calculations, this emission is shown to originate from ligand‐to‐metal charge transfer facilitated by Au???Cu metallophilic bonding.  相似文献   

14.
A three-coordinate diketiminate-nickel(I) complex with a carbonyl ligand has been characterized using EPR and IR spectroscopies and X-ray crystallography. The T geometry (bending from the sterically favored C(2)(v)() structure) contrasts with that of isosteric d(9) copper(II) complexes. DFT calculations on a truncated model reproduce experimental geometries, implying that the geometric differences are electronic in nature. Analysis of the charge distribution in the complexes shows that the geometry of the three-coordinate d(9) complexes is affected by differential charge donation of the ligands to the metal center.  相似文献   

15.
5,7-Di-tert-butyl-3-phenyl benzoxazolium tetrafluoroborate 1 could be prepared by simple reaction of the corresponding aminophenol with triethyl orthoformate under acidic conditions. Both rhodium(I) and copper(I) complexes with benzoxazol-2-ylidene ligand were then efficiently synthesised in a straightforward and smooth manner involving the reaction of benzoxazolium salt 1 with metal precursor and an external base. The complexes have been fully characterised and used in metal-catalysed hydrosilylation of ketones, where they showed poor catalytic activity, presumably due to low stability of the complexes under those conditions.  相似文献   

16.
The new mononuclear and dinuclear tricarbonylrhenium(I) complexes [(HATN)Re(CO)(3)Cl] (1-Cl) and [(μ-Me(6)-HATN)[Re(CO)(3)Cl](2)] (2-Cl(2)) of highly symmetric ligands HATN and Me(6)-HATN were synthesized and structurally characterized. X-Ray crystal structures reveal identical strained aromatic systems and out of the plane fac-Re(CO)(3)Cl units for both complexes. The packing geometry in the unit cell of 1 suggests intermolecular π-π association. Infrared spectroelectrochemistry (SEC) experiments confirmed ligand-based reductions. To get more insight into the reduction mechanism the triflate salts, [(HATN)Re(CO)(3)](OTf) (1-OTf) and [(μ-Me(6)HATN){Re(CO)(3)}(2)](OTf)(2) (2-OTf(2)), were synthesized. Their electrochemical and spectroelectrochemical behavior also exhibits reduction of the aromatic systems. The electronic absorption spectral features of the one electron reduced species were studied by UV-vis-NIR spectroscopy, which shows a broad shoulder at 1500 nm, confirming intra-ligand charge transfer (ILCT). Density functional theory (DFT) calculations on the complexes 1-Cl and 2-Cl(2) for structural optimization show good agreement with experimental bond lengths and bond angles. The spin density plot shows a metal based HOMO and HATN ligand centered LUMO.  相似文献   

17.
Mechanism of electroreduction of copper(I) cyanide complexes from aqueous electrolytic solutions is studied within a quantum-chemical method of a density functional and a quantum-mechanical theory of charge transfer in polar environment. The electrochemically active form directly participating in an elementary electroreduction act is shown to be the [Cu(CN)2] complex. Modeling calculations of the activation energy for an elementary charge transfer act reveal for the first time that the transfer of heavy particles along an adiabatic potential energy curve is a more probable mechanism of electroreduction of copper(I) cyanocomplexes than an outer-sphere electron transfer.  相似文献   

18.
The preparation of a series of imidazolium salts bearing N‐allyl substituents, and a range of substituents on the second nitrogen atom that have varying electronic and steric properties, is reported. The ligands have been coordinated to a copper(I) centre and the resulting copper(I)–NHC (NHC=N‐heterocyclic carbene) complexes have been thoroughly examined, both in solution and in the solid‐state. The solid‐state structures are highly diverse and exhibit a range of unusual geometries and cuprophilic interactions. The first structurally characterised copper(I)–NHC complex containing a copper(I)–alkene interaction is reported. An N‐pyridyl substituent, which forms a dative bond with the copper(I) centre, stabilises an interaction between the metal centre and the allyl substituent of a neighbouring ligand, to form a 1D coordination polymer. The stabilisation is attributed to the pyridyl substituent increasing the electron density at the copper(I) centre, and thus enhancing the metal(d)‐to‐alkene(π*) back‐bonding. In addition, components other than charge transfer appear to have a role in copper(I)–alkene stabilisation because further increases in the Lewis basicity of the ligand disfavours copper(I)–alkene binding.  相似文献   

19.
Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.  相似文献   

20.
New copper(I) mixed-ligand complexes 14 of the formula Cu(N–N)PR3X, where N–N = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (5,5′dimbpy) and PR3 = tricyclohexylphosphine, tris(2-cyanoethyl)phosphine and isopropyldiphenylphosphine, have been synthesized. The complexes were characterized by EA, IR, NMR and single crystal X-ray diffraction. The solution fluorescence emission spectra were measured. The single crystal X-ray analysis showed that the copper(I) ion is four-coordinate with a distorted tetrahedral geometry. The complexes catalyze the formation of diphenylacetylene from the coupling of halobenzene with phenylacetylene. The complex Cu(5,5′-dimethylbpy)P{(cyhexyl)3}I showed the highest catalytic activity. At room temperature all four complexes exhibit, in dichloromethane, emission maxima in the 329–344 nm range, corresponding to intra-ligand excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号