首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemiluminescence detection was used in capillary electrophoresis integrated on a microchip. Quartz microchips have two main channels and four reservoirs. Dansyl-lysine and -glycine were separated and detected with bis[(2-(3,6,9-trioxadecanyloxycarbony)-4-nitrophenyl]oxalate as peroxyoxalate chemiluminescent reagent. These dansyl amino acids came into contact with the chemiluminescence reagent to produce visible light at the interface between the separation channel and chemiluminescence reagent-containing reservoir. The detection limit (S/N = 3) for dansyl-lysine was 1 x 10(-5) M, which corresponded to the very small mass detection limit of ca. 0.4 fmol. However, the concentration sensitivity in the present system was approximately two orders of magnitude lower than that in the conventional capillary electrophoresis-chemiluminescence detection system. The relative standard deviations of migration time and peak height for dansyl-lysine were 4.2 and 4.5%, respectively. A channel conditioning before every run and an appropriate control of voltages were needed for the reproducible results. The present system had advantages in rapid separation time (within 40 s), small (several 10 pI) and accurate sample injection method using a cross-shaped injector, and simplification and miniaturization of the detection device.  相似文献   

2.
Due to the severe damage caused by free hydroxyl radicals (OH·) to cells and tissues, there is much interest in finding and studying effective and non-toxic OH· scavengers, including traditional Chinese herbs. In this paper, the simple and highly-sensitive technique of capillary zone electrophoresis with amperometric detection (CZE-AD) was used to study the OH· scavenging activities of aqueous extracts from some traditional Chinese herbs. Salicylic acid (SAL) was used as an OH· trap, and the content of OH· could be determined by assaying their products, 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA). The optimum conditions for CZE-AD for the determination of 2,3-DHBA and 2,5-DHBA were explored. The linearity ranges of 2,3-DHBA and 2,5-DHBA were 1.0 ×10–7~1.0 ×10–4 mol L–1, and their detection limits were as low as 2×10–8 mol L–1, which were much better than the CE-UV method often used. The traditional Chinese herbs studied included Radix angelicae sinensis, Rhizoma coptidis, Ligustrum lucidum, Ligusticum wallichii, Radices glycyrrhizae and Semen plantaginis. The experiments showed that the aqueous extracts from all of the above traditional Chinese herds had free OH· scavenging activities, although to different degrees.  相似文献   

3.
Capillary electrophoresis interfaced with electrospray is a convenient technique for continuously transferring column effluent from capillary-to-planar format. Conditions are optimized to produce a narrow (approximately 20 microm) liquid filament (electrofilament), which is capable of depositing spatially focused bands with track widths that are routinely 100 microm. A fiber optic-based, laser-induced fluorescence cell is employed to monitor the separation on-column while the separated bands are deposited onto a moving substrate. The photodetection of deposited bands is accomplished by using either a charge-coupled device camera or a photomultiplier tube. Deterioration of on-column separation performance is observed when the electrofilament voltage is applied. Elevating the inlet of the capillary column, to provide hydrodynamic flow, restores separation performance. Substrate temperature and translational rates are optimized with respect to both off-column separation efficiency and signal intensity. Off-column separation efficiencies of 65 000 plates per meter were achieved. A linear dynamic range of 10(3) and a limit of detection of 10(-8) M were obtained for kiton red deposited onto a reversed phase thin-layer chromatography plate. To demonstrate the applicability of this technique to more complex separation solutions, a dye mixture was successfully separated and deposited with sodium dodecyl sulfate in the running buffer.  相似文献   

4.
Ahmad Amini 《Electrophoresis》2014,35(20):2915-2921
This paper presents a new approach for identifying analytes by CE. The compound to be identified is analyzed together with the corresponding reference standard during a double injection capillary electrophoretic run. The inter‐plug distance is regulated by applying an electrical field over the capillary for a predetermined time period (tPE). The migration time of an analyte being exposed to the partial electrophoresis was calculated from the partial migration time (tmig(p)) as described in this paper. The identification is based on the closeness of agreement between the calculated migration time (tmig(c)) and observed migration time (tmig) of the reference standard. The validity of the derived equations was checked by analyzing several substances such as caffeine, melamine, acetyl salicylic acid, paracetamol, ibuprofen, metoprolol, naproxen, somatropin, several insulin analogs, as well as different pharmaceutical and natural products. The migration time ratios for the identified solutes varied between 0.996 and 1.006 (i.e., 1.001 ± 0.005), indicating good agreement between the observed and calculated migration times.  相似文献   

5.
Chen Y  Zhang L  Cai Z  Chen G 《The Analyst》2011,136(9):1852-1858
In this paper, we developed a simple and effective on-line focusing technique combining dynamic pH junction and sweeping by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. Dynamic pH junction-sweeping is defined when the sample has a different buffer pH (dynamic pH junction condition) and is devoid of micelles (sweeping condition) relative to the background electrolyte (BGE). This hyphenated focusing mode was applied to the sensitive and selective focusing of four dipeptides: Tyr-Phe, Tyr-Leu, Trp-Gly, and Ala-Gln. Picomolar detectability of these dipeptides by CE-LIF detection was demonstrated through effective focusing of large sample volumes (up to 39% capillary length) using the dual pH junction-sweeping focusing mode. 25 mmol L(-1) sodium dihydrogen phosphate, pH 2.5 was used as the sample matrix, and 100 mmol L(-1) borate, 21 mmol L(-1) sodium dodecylsulfate (SDS), 16 mmol L(-1) Brij35, pH 9.0 as the background solution (BGS). The concentration detection limits (S/N = 3) of the four dipeptides were in the range of 1.0-5.0 pmol L(-1). The developed method has been successfully used for the determination of dipeptides in human serum samples.  相似文献   

6.
A competitive immunoassay for neuropeptide Y (NPY) based on capillary electrophoresis (CE) with laser-induced fluorescence detection was developed utilizing polyclonal antisera as the immunoreagent and fluorescein-labeled NPY as the tracer. The assay was performed with on-line mixing of reagents, automated injections, and a 3 s separation time. The assay had a detection limit of 850 pM. To detect NPY at lower concentrations, the assay was coupled on-line to reversed-phase capillary liquid chromatography (LC). In this arrangement, 5 microL samples were preconcentrated by capillary LC and eluted by a gradient of isopropanol-containing mobile phase. The resulting chromatographic peaks were monitored by the CE immunoassay. With preconcentration, the concentration detection limit was improved to 40 microM and NPY could be measured in push-pull perfusion samples collected from the paraventricular nucleus of freely moving rats. The technique was extended to simultaneous detection of NPY and glucagon secretion from islets of Langerhans.  相似文献   

7.
Ding XP  Qi J  Chang YX  Mu LL  Zhu DN  Yu BY 《Journal of chromatography. A》2009,1216(11):2204-2210
Flavonoids in plants used for the treatment of various cardiovascular, cancer diseases have been reported to possess potential protective effects against oxidative injury. Ginkgo biloba leaves, known for their antioxidant activity, were chosen for this study. In this paper, 12 flavonoids in G. biloba leaves were identified by HPLC-diode array detection (DAD)-electrospray ionization MS. HPLC-DAD coupled with chemiluminescence detection was used to determine free radical scavenging activity of flavonoids. It was found that the flavonol glycosides could markedly inhibit the luminescent signal, which indicated that they are mainly responsible for the antioxidant activities of G. biloba leaves. Total antioxidant activity of these flavonoids was used to evaluate the differences of G. biloba leaves collected in 13 habitats. The combination of chemical and activity analysis can provide a valid method to quantify the bioactive components in G. biloba leaves, and this may be a more rational approach to the quality assessment of G. biloba leaves.  相似文献   

8.
An online hyphenation of capillary electrophoresis (CE) with inductively coupled plasma-mass spectrometry (ICP-MS) is developed, using a homemade nebulizer as the interface. The high resolution power of CE is used for the separation of metal species, whereas ICP-MS is taken for element specific detection with low detection limits. Metal species of standard solutions and real samples are separated and monitored by UV and ICP-MS. After optimization, electropherograms with high resolution were obtained, showing low detection limits around 1 μg/L (e.g. Pt-species) and very high resolution. Typical analysis times were below 22 min. Quality control aspects concerned species stability during the analytical procedure and stability of electrical current during nebulization. A possible interfering suction flow was estimated and found to be negligible. Received: 17 April 1996 / Revised: 12 June 1996 / Accepted: 20 June 1996  相似文献   

9.
High-performance capillary electrophoresis (CE) with electrochemical detection (ED) was employed to determine hydroxyl radicals in the Fenton reaction. Hydroxyl radicals can react with salicylic acid to produce 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid, which can be analyzed by CE-ED. Based on this principle, hydroxyl radicals were determined indirectly. In a 20 mmol/L phosphate running buffer (pH 7.4), 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid would elute simultaneously from the capillary within 6 min. As the working electrode, a 300 m diameter carbon-disk electrode exhibits good responses at +0.60 V (vs. SCE) for the two analytes. Peak currents of the two analytes are additive. Excellent linearity was obtained in the concentration range from 1.0×10-3 mol/L to 5.0×10-6 mol/L for 2,3-dihydroxy benzoic acid. The detection limit (S/N=3) was 2.0×10-6 mol/L. This method was successfully applied for studying hydroxyl radical scavenging activities of Chinese herbs. It is testified that Apocynum Venetum L., Jinkgo bibola L., Morus alba L. and Rhododendron dauricum L. have strong hydroxyl radical scavenging activities.  相似文献   

10.
We demonstrate here, for the first time, that non-aqueous capillary electrophoresis (NACE) can be interfaced with any ultra-low-temperature (ULT) separation method and 77 K fluorescence spectroscopy (FS). This novel ULT-NACE-FS system consists of a modular CE system, a dry ice bath, and instrumentation for 77 K fluorescence detection. The ULT-NACE method serves to separate structurally similar molecules by a combination of a low electrophoresis current and a high voltage at approximately -70 degrees C. When the ULT-NACE-separated analytes move into the quartz Dewar flask and traverse into the capillary detection window, liquid nitrogen was added, thus freezing the separating analyte zones, allowing the collection of 77 K fluorescence spectra for on-line spectral fingerprint identification. The first application of the ULT-NACE-FS system is described for the analysis of photo-converted analytes of trans-resveratrol; prospects and future applications of ULT-NACE-FS are also briefly addressed.  相似文献   

11.
A new method for the determination of selenomethionine (SeMet) was developed using capillary electrophoresis on-line coupled with electrochemiluminescence detection. The effects of several factors such as detection potential, concentration and pH of phosphate buffer, separation voltage and injection voltage were investigated. Under optimal conditions, the linear concentration range for SeMet was 0.001 to 0.8 μg mL?1 with a correlation coefficient of 0.9996. The limit of detection (S/N?=?3) was 0.39 ng mL?1. The recovery of SeMet in selenium-enriched yeast (SEY) was 98.6% on an average. The method presented is simple, quick, sensitive and can be reliably applied to the determination of SeMet in SEY.  相似文献   

12.
Enzymatic farnesylation of oncogenic forms of Ras proteins is the initial step in a series of posttranslational modifications essential for Ras activity. The modification is catalyzed by the enzyme, protein farnesyltransferase (PFTase), which transfers a farnesyl moiety from farnesyl diphosphate to the protein. We employed capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection to develop a rapid and sensitive method for the determination of PFTase activity in vitro. The limited substrate specificity of PFTase allowed us to use a fluorescently labeled pentapeptide instead of a Ras protein as a substrate for the enzyme; the product of the enzymatic reaction was the farnesylated pentapeptide. The product was separated from the substrate by CE and quantified with LIF detection. Under optimal conditions, the separation was achieved within 10 min with a resolution of 86. The mass and concentration limits of detection for the farnesylated product were 10(-19) mol and 0.28 nM, respectively. By measuring the rate of accumulation of the farnesylated product, we were able to determine the kinetic parameters of the enzymatic reaction. For yeast PFTase as an enzyme and difluorocarboxyfluorescein-labeled GCVIA peptide as a substrate, the values of k(cat) and K(M) were found to be (3.1 +/- 0.3)x10(-3) s(-1) and (12.0 +/- 1.2) nuM, respectively. Our results suggest that CE-LIF can be efficiently used for the determination of enzymatic activity of PFTase in vitro. After minor modifications, the developed method can be also applied to other reactions of enzymatic prenylation of proteins.  相似文献   

13.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

14.
A simple, rapid and reproducible capillary isotachophoretic on-line coupled with capillary zone electrophoresis (CITP-CZE) method for the determination of IMz in food packaging extracts and its residues in apples is described. A good separation of the IMZ from other sample constituents was achieved within 15 minutes without any sample clean up. Method characteristics (linearity, accuracy, intra-assay and detection limit) were determined. Less amount of time involved, sufficient sensitivity and low running cost are the important attributes of CITP-CZE method.  相似文献   

15.
Summary The sweeping concept is extended to capillary zone electrophoresis (CZE) separation of neutral solutes involving complexation with borate. Analogous to the pseudostationary phase in electrokinetic chromatography (EKC), the complexing agent (borate) serves as carrier for sweeping and separation in CZE. Therefore, similar to the retention factor in EKC, the focusing effect in the present system is directly related to the association constant between the analyte and complexing agent. Theoretical and some preliminary experimental studies gerenally suggest that the electrophoretic mobility of the complex and the concentration of the complexing agent affect the resulting length of narrowed zones. Moreover, sweeping using borate is affected by pH since borate complexation is pH dependent. From around 10 to 40-fold improvement in peak heights has been observed experimentally for some neutral test analytes (monosaccharides, catechols, and nucleosides)  相似文献   

16.
Tsai CH  Huang HM  Lin CH 《Electrophoresis》2003,24(17):3083-3088
The first application of a violet light-emitting diode (LED) for fluorescence detection in capillary electrophoresis (CE) is described. The utility of violet LED (peak emission wavelength at 410 nm, approximately 2 mW) for fluorescence detection is demonstrated by examining reserpine and dopamine-labeled NDA (naphthalene-2,3-dicarboxaldehyde), respectively. The detection limit for reserpine was determined to be 2.5 x 10(-6) M by normal micellar electrokinetic capillary chromatography (MEKC) and this was improved to 2.0 x 10(-9) M and 2.0 x 10(-10) M when sweeping-MEKC and cation-selective exhaustive injection (CSEI)-sweep-MEKC techniques were applied, respectively. In addition, the detection limit of NDA-labeled dopamine was determined to be 6.3 x 10(-6) M by means of normal MEKC and this was improved to 3.0 x 10(-8) M when the sweeping-MEKC mode was applied.  相似文献   

17.
Capillary electrophoresis (CE) is an attractive technique in separation science because of its high separation performance, short analysis time and low cost. Electrochemical detection (EC) is a powerful tool for CE because of its high sensitivity. In this review, developments of CE-EC from 2008 to August, 2011 are reviewed. We choose papers of innovative and novel results to demonstrate the newest and most important progress in CE-EC.   相似文献   

18.
In the current work, phenolic acids were analysed and their radical scavenging activity evaluated by CE, including the quantification of overlapping peaks by applying the multivariate curve resolution (MCR) method. To investigate radical scavenging activity, the solution of phenolic acids was treated with a stable free 2,2-diphenyl-1-picrylhydrazyl radical of different concentrations and the radical scavenging activity of the reaction mixture was monitored. The radical scavenging reaction was also applied to wheat bran extracts. The overlapping peaks on the electropherograms of both mixtures of standard compounds and extracts of different wheat bran varieties were resolved by using the MCR method, assuming that the overlapping compounds have different UV spectra. MCR enabled the insufficient resolution between syringic and ferulic acids to be effectively resolved.  相似文献   

19.
Complementary on-line preconcentration strategies are needed when analyzing different classes of solutes in real samples by capillary electrophoresis (CE) with UV detection. The performance of three different on-line preconcentration (focusing) techniques under alkaline conditions was examined in terms of their selectivity and sensitivity enhancement for a group of steroids, including classes of androgens, corticosteroids and estrogens. Electrokinetic focusing of large sample injection plugs (up to 28% of effective capillary length or 22.1 cm) directly on-capillary can be tuned for specific classes of steroids based on changes in their mobility (velocity) using a multi-section electrolyte system in CE. A dynamic pH junction was applied for the selective resolution and focusing of weakly acidic estrogens using borate, pH 11.0 and pH 8.0 in the background electrolyte and the sample, respectively. Sweeping, using an anionic bile acid surfactant and neutral gamma-cyclodextrin (gamma-CD) under alkaline conditions (pH 8), resulted in focusing and separation of the moderately hydrophobic (non-ionic) classes of steroids, such as androgen and corticosteroids. Optimal focusing and resolution of all test steroids under a single buffer condition was realized by a dynamic pH junction-sweeping format using borate, pH 11.0 and bile acid surfactant with gamma-CD in the BGE, whereas the sample is devoid of surfactant at pH 8.0. The design of selective on-line focusing strategies in CE is highlighted by the analysis of microgram amounts of ethynyl estradiol derived from a female contraceptive pill extract using the dynamic pH junction method, which resulted in over a 100-fold enhancement in concentration sensitivity.  相似文献   

20.
The behavior of charged species along concentration boundaries in capillary zone electrophoresis (CZE) that was first described in detail by Everaerts et al. in 1979 assured the possibility of concentrating charged solutes inside the capillary. The concentration effect is based on the sudden change in analyte electrophoretic velocity brought about by the difference in the magnitude of the electric field. Furthermore, this on-line method could be the needed solution to the problem of low concentration sensitivity in CZE. Sample stacking, which is now its well known name, has then found valuable use in applying CZE in many fields, especially after the in-depth studies performed in the early 90s by Chien and Burgi. This article reviews the theory and methodological developments of sample stacking developed for charged analytes in CZE and also in electrokinetic chromatography. A table conveying the reported applications especially in the biomedical and environmental fields is given. On top of this, other on-line concentration methods for charged species, namely, sample self-stacking, acetonitrile stacking, sweeping, cation selective exhaustive injection-sweeping, and use of a pH junction, are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号