首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
林峰根 《数学研究》2013,(4):382-387
研究3-正则图的一个有意义的问题是它是否存在k个没有共边的完美匹配.关于这个问题有一个著名的Fan-Raspaud猜想:每一个无割边的3-正则图都有3个没有共边的完美匹配.但这个猜想至今仍未解决.设dim(P(G))表示图G的完美匹配多面体的维数.本文证明了对于无割边的3-正则图G,如果dim(P(G))≤14,那么k≤4:如果dim(P(G))≤20,那么k≤5.  相似文献   

2.
Given a set P of points in general position in the plane, the graph of triangulations of P has a vertex for every triangulation of P, and two of them are adjacent if they differ by a single edge exchange. We prove that the subgraph of , consisting of all triangulations of P that admit a perfect matching, is connected. A main tool in our proof is a result of independent interest, namely that the graph that has as vertices the non-crossing perfect matchings of P and two of them are adjacent if their symmetric difference is a single non-crossing cycle, is also connected.  相似文献   

3.
 Let P n be a set of n=2m points that are the vertices of a convex polygon, and let ℳ m be the graph having as vertices all the perfect matchings in the point set P n whose edges are straight line segments and do not cross, and edges joining two perfect matchings M 1 and M 2 if M 2=M 1−(a,b)−(c,d)+(a,d)+(b,c) for some points a,b,c,d of P n . We prove the following results about ℳ m : its diameter is m−1; it is bipartite for every m; the connectivity is equal to m−1; it has no Hamilton path for m odd, m>3; and finally it has a Hamilton cycle for every m even, m≥4. Received: October 10, 2000 Final version received: January 17, 2002 RID="*" ID="*" Partially supported by Proyecto DGES-MEC-PB98-0933 Acknowledgments. We are grateful to the referees for comments that helped to improve the presentation of the paper.  相似文献   

4.
Let denote the maximum number of edges in a graph having n vertices and exactly p perfect matchings. For fixed p, Dudek and Schmitt showed that for some constant when n is at least some constant . For , they also determined and . For fixed p, we show that the extremal graphs for all n are determined by those with vertices. As a corollary, a computer search determines and for . We also present lower bounds on proving that for (as conjectured by Dudek and Schmitt), and we conjecture an upper bound on . Our structural results are based on Lovász's Cathedral Theorem.  相似文献   

5.
多边形链图的完美匹配数(即多边形碳氢链状聚合物的Kekule结构数)是数学化学研究的重要内容之一。我们给出了一个求该数的简洁算法,并证明该数是一个多项式。做为应用,对于一类特殊的多边形链图,给出了具体的表达式。  相似文献   

6.
We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 times the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduced by Elkies, Kuperberg, Larsen and Propp has exactly 2 n(n+1)/2 perfect matchings. As further applications, we prove a recurrence for the number of perfect matchings of certain cellular graphs indexed by partitions, and we enumerate the perfect matchings of two other families of graphs called Aztec rectangles and Aztec triangles.  相似文献   

7.
A connected graph G is said to be factor-critical if G − ν has a perfect matching for every vertex ν of G. In this paper, the factor-critical graphs G with |V(G)| maximum matchings and with |V(G)| + 1 ones are characterized, respectively. From this, some special bicritical graphs are characterized. This work is supported by the Ph.D. Programs Foundation of Ministry of Education of China (No.20070574006) and the NNSF(10201019) of China.  相似文献   

8.
一个图的Wiener指数是指这个图中所有点对的距离和.Wiener指数在理论化学中有广泛应用. 本文刻画了给定顶点数及特定参数如色数或团数的图中Wiener指数达最小值的图, 同时也刻画了给定顶点数及团数的图中Wiener指数达最大值的图.  相似文献   

9.
Let G be a regular bipartite graph and . We show that there exist perfect matchings of G containing both, an odd and an even number of edges from X if and only if the signed graph , that is a graph G with exactly the edges from X being negative, is not equivalent to . In fact, we prove that for a given signed regular bipartite graph with minimum signature, it is possible to find perfect matchings that contain exactly no negative edges or an arbitrary one preselected negative edge. Moreover, if the underlying graph is cubic, there exists a perfect matching with exactly two preselected negative edges. As an application of our results we show that each signed regular bipartite graph that contains an unbalanced circuit has a 2‐cycle‐cover such that each cycle contains an odd number of negative edges.  相似文献   

10.
乘积图的全色数   总被引:4,自引:0,他引:4  
杨义先  张忠辅 《应用数学》1999,12(2):108-111
本文得到了有关乘积图的全色数的一些结果,并利用这些结果证明了Mesh图和Tours-图均满足全色数猜想.特别,几乎所有的Mesh-图都是第一类图.  相似文献   

11.
Let T2k+1 be the set of trees on 2k+1 vertices with nearly perfect matchings and α(T) be the algebraic connectivity of a tree T. The authors determine the largest twelve values of the algebraic connectivity of the trees in T2k+1. Specifically, 10 trees T2,T3,... ,T11 and two classes of trees T(1) and T(12) in T2k+1 are introduced. It is shown in this paper that for each tree T^′1,T^″1∈T(1)and T^′12,T^″12∈T(12) and each i,j with 2≤i〈j≤11,α(T^′1)=α(T^″1)〉α(Tj)〉α(T^′12)=α(T^″12).It is also shown that for each tree T with T∈T2k+1/(T(1)∪{T2,T3,…,T11}∪T(12)),α(T^′12)〉α(T).  相似文献   

12.
A set \(S\subseteq V\) is a paired-dominating set if every vertex in \(V{\setminus } S\) has at least one neighbor in S and the subgraph induced by S contains a perfect matching. The paired-domination number of a graph G, denoted by \(\gamma _{pr}(G)\), is the minimum cardinality of a paired-dominating set of G. A conjecture of Goddard and Henning says that if G is not the Petersen graph and is a connected graph of order n with minimum degree \(\delta (G)\ge 3\), then \(\gamma _{pr}(G)\le 4n/7\). In this paper, we confirm this conjecture for k-regular graphs with \(k\ge 4\).  相似文献   

13.
Let k, h be positive integers with k ≤ h. A graph G is called a [k, h]-graph if k ≤ d(v) ≤ h for any v ? V(G){v \in V(G)}. Let G be a [k, h]-graph of order 2n such that k ≥ n. Hilton (J. Graph Theory 9:193–196, 1985) proved that G contains at least ?k/3?{\lfloor k/3\rfloor} disjoint perfect matchings if h = k. Hilton’s result had been improved by Zhang and Zhu (J. Combin. Theory, Series B, 56:74–89, 1992), they proved that G contains at least ?k/2?{\lfloor k/2\rfloor} disjoint perfect matchings if k = h. In this paper, we improve Hilton’s result from another direction, we prove that Hilton’s result is true for [k, k + 1]-graphs. Specifically, we prove that G contains at least ?\fracn3?+1+(k-n){\lfloor\frac{n}3\rfloor+1+(k-n)} disjoint perfect matchings if h = k + 1.  相似文献   

14.
该文证明若G是2n阶均衡二分图,δ(G)≥(2n-1)/3,则对任何正整数k,n≥4k时,任给G的一个完美对集M,G中存在一个包含M的所有边的恰含k个分支的2 因子(k=1,n=5且δ(G)=3除外). 特别k=2时,在条件n≥5且δ(G)≥(n+2)/2下,结论也成立. 这里所给的δ(G)的下界是最好的可能.   相似文献   

15.
Let G be a simple graph with 2n vertices and a perfect matching.The forcing number f(G,M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G.Among all perfect matchings M of G,the minimum and maximum values of f(G,M) are called the minimum and maximum forcing numbers of G,denoted by f(G) and F(G),respectively.Then f(G)≤F(G) ≤n-1.Che and Chen(2011) proposed an open problem:how to characterize the graphs G with f(G)=n-1.Lat...  相似文献   

16.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

17.
Let P and Q be disjoint point sets with 2r and 2s elements respectively, and M1 and M2 be their minimum weight perfect matchings (with respect to edge lengths). We prove that the edges of M1 and M2 intersect at most |M1|+|M2|−1 times. This bound is tight. We also prove that P and Q have perfect matchings (not necessarily of minimum weight) such that their edges intersect at most min{r,s} times. This bound is also sharp. Supported by PAPIIT(UNAM) of México, Proyecto IN110802 Supported by FAI-UASLP and by CONACYT of México, Proyecto 32168-E Supported by CONACYT of México, Proyecto 37540-A  相似文献   

18.
关于图的团符号控制数   总被引:2,自引:0,他引:2  
引入了图的团符号控制的概念,给出了n阶图G的团符号控制数γks(G)的若干下限,确定了几类特殊图的团符号控制数,并提出了若干未解决的问题和猜想.  相似文献   

19.
The forcing number of a perfect matching M of a graph G is the cardinality of the smallest subset of M that is contained in no other perfect matching of G. In this paper, we demonstrate several techniques to produce upper bounds on the forcing number of bipartite graphs. We present a simple method of showing that the maximum forcing number on the 2m×2n rectangle is mn, and show that the maximum forcing number on the 2m×2n torus is also mn. Further, we investigate the lower bounds on the forcing number and determine the conditions under which a previously formulated lower bound is sharp; we provide an example of a family of graphs for which it is arbitrarily weak.  相似文献   

20.
In this paper, a new class of rings, called FIC rings, is introduced for studying quasi-zero-divisor graphs of rings. Let R be a ring. The quasi-zero-divisor graph of R, denoted by Γ_*(R), is a directed graph defined on its nonzero quasi-zero-divisors, where there is an arc from a vertex x to another vertex y if and only if x Ry = 0. We show that the following three conditions on an FIC ring R are equivalent:(1) χ(R) is finite;(2) ω(R) is finite;(3)Nil_*R is finite where Nil_*R equals the finite intersection of prime ideals. Furthermore, we also completely determine the connectedness, the diameter and the girth of Γ_*(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号