首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

3.
Four glasses in ZnO–SiO2–B2O3 ternary system were prepared by the melt quenching method with the objective of optimizing sub-nanosecond emission over the UV region of zinc borosilicate glasses used in superfast scintillators. The effect of vanadium addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses was characterized by means of DTA, XRD, SEM and fluorescence spectrophotometer. Vanadium contributed to the near-band-edge emission in two ways, by introducing donor levels in the energy band of ZnO particles and by facilitating the precipitation of ZnO and willemite crystals. Furthermore, nucleation of willemite and zinc oxide phases, which are both the origins of the intense emission bands in the UV region, was facilitated with increasing either the time or temperature of heat treatments. Photoluminescence spectra showed the elimination of the visible emission band which is favorable in scintillating glasses.  相似文献   

4.
5.
The crystallization behaviors of MgO–Al2O3–SiO2–TiO2 system glasses doping with different content Fe2O3 were investigated by means of differential thermal analysis and X-ray diffraction. The kinetic parameter of activation energy for crystallization (E) was obtained by the Owaza Johnson–Mehl–Avrami method. The results show that during the heat treatment, the intermediate phase of µ-cordierite initially precipitated from the glass matrix, and with the increasing temperature, it transformed to α-cordierite. The more the Fe2O3 content, the lower the crystallization peak temperature (T p).But the lowering of T p value did not mean that the value of E decreases correspondingly. The experimental results suggest that only with appropriate content (about 4.2 wt%), Fe2O3 can promote the crystallization of this glass effectively.  相似文献   

6.
Glasses having composition (B2O3)25 (PbO)70 (Al2O3)5 (Sm2O3)x ,where x=0, 0.5, 1, 2, 3 and 5 g were prepared using the normal melt quench technique. Spectral reflectance and transmittance at normal incidence of the glass samples are recorded with a spectrophotometer in the spectral range 220–2200 nm. These measured values are introduced into analytical expressions to calculate the real and imaginary parts of the refractive indices. Wemple–DiDomenico single oscillator model and one-term Sellmeier dispersion relations are used to model the real refractive indices. Dispersion parameters such as: single oscillator energy, dispersion energy, lattice oscillating strength, average oscillator wavelength, average oscillator strength and Abbe's number are deduced and compared. Absorption dispersion parameters such as: Fermi energy, optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter are calculated. Effects of doping Sm2O3 on these linear optical parameters are investigated and interpreted.  相似文献   

7.
Al2O3 was added to a 2CaO–La2O3–5P2O5 metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO–0.1Al2O3–La2O3–5P2O5. The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass–ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass–ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 °C for 1 h or 5 h, in air, following heating at 3 or 10 °C/min. With Al2O3 addition, after a heat treatment at 700 °C, 100–300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 °C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the Al-containing glass.  相似文献   

8.
Bi2O3 doped 65SiO2–20Al2O3–15La2O3 (in mole%) glasses were prepared by the traditional melting–quenching method. The spectroscopic properties and mechanism of NIR broadband emission in these glasses were investigated in this work. Three excitation wavelengths of 500, 700 and 800 nm were used to test emission spectra. The emission band under 500 nm excitation can be regarded as combination of emission bands under 700 and 800 nm excitation. 2.0 mole% is found to be the optimal Bi2O3 doping level in this glass. Under 500 nm excitation its emission peak, FWHM and lifetime of emission band are 1160 nm, 300 nm and 569 μs, respectively. The longest fluorescent lifetime reaches 620 μs under 700 nm excitation. The valence state of Bi in these glasses is suggested to be lower than +3 by X-ray photoelectron spectroscopy. With the help of energy matching, we infer that both Bi0 and Bi+ centers are responsible for the NIR fluorescence of Bi2O3 doped 65SiO2–20Al2O3–15La2O3 glass.  相似文献   

9.
Abstract

A systematic investigation of the brazing of Al2O3 to Kovar® (Fe–29Ni–17Co wt.%) using the active braze alloy (ABA) Ag–35.25Cu–1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.  相似文献   

10.
11.
Transport numbers in the molten system NaF–KF–AlF3 (Al2O3, CaF2) were investigated by the Hittorf method. It was confirmed that in molten cryolite, Na3AlF6, 1,010 °C, the current is transported almost exclusively by the Na+ cations (t(Na+)?=?0.99). When AlF3 was added to a Na3AlF6 melt, the transport number of sodium cations decreased to 0.74 at the composition corresponding to NaAlF4. In molten K3AlF6, the transport number of K+ cations equals 0.836 at 1,005 °C. In melts containing both Na+ and K+, the cations contribute to the charge transport approximately in the ratio of the squares of their ionic radii. When 5 mass % of CaF2 was added to the molten NaF–KF–AlF3 system, it remarkably influenced the transport numbers of potassium and fluoride anions.  相似文献   

12.
吴远大  邢华等 《中国物理快报》2002,19(12):1877-1879
SiO2 galss films doped with GeO2 were prepared by the flame hydrolysis deposition method,then annealed at 1200℃.After exposure to high pressure hydrogen,the as-deposited films were irradiated with excimer laser pulses operated at 248nm,The induced refractive index change(the growth of index change was 0.33%)was measured by a spectorscopic ellipsometer.A waveguide array has been written in the film by irradiation through a phase mask.  相似文献   

13.
Eutectic crystal of 0.5% Eu-doped 30LaAlO3–70Al2O3 (vol %) was prepared by micro-pulling down (μ-PD) technique under nitrogen atmosphere. Being excited at a wavelength of 320 nm, the crystal exhibited intense emission band with a maximum at 450 nm which is corresponding to 4f65d-4f7(8S7/2) transitions of Eu2+. The decay time and fluorescence quantum efficiency (QE) were determined to be about 475 ns and 60%, respectively. When alpha-ray excited the crystal, both Eu2+ 4f65d-4f7(8S7/2) and Eu3+ 4f6-4f6 (5D0-7F1,2) emission peaks were observed at 435 nm and 600 nm. By the pulse height spectra, the relative scintillation light yield of the crystal was about 4% compared with that of BGO commercial scintillator.  相似文献   

14.
The glass formation in the SiO2-rich region of the ternary oxide system Al2O3–ZrO2–SiO2 with MgO, CaO, and TiO2 as melting aids was analyzed. The crystallization of glasses with different content of TiO2 and phase evolution with the temperature was studied by X-ray diffraction, infrared, laser Raman spectroscopy and transmission electron microscopy. The use of TiO2 favored formation and crystallization of the glasses due to the decrease of the viscosity of melts and acting as a nucleating agent. The crystalline phase of t-ZrO2 was developed at temperatures as low as 880°C whereas in as prepared specimens without TiO2 its presence was not detected. For the specimens with TiO2, t-ZrO2 and mullite were the principal phases at 1000°C. TiO2 addition did not change the crystallization sequence but decreased the formation temperature of the crystalline phases. Most of Ti4+ ions entered into t-ZrO2 and only a small portion in mullite, but the surplus was detected in ZrTiO4.  相似文献   

15.
In this article, thermal and hydrodynamic performances of a miniature tangential heat sink are investigated experimentally by using Al2O3–H2O and TiO2–H2O nanofluids. The effects of flow rate and volume concentration on the thermal performance have been investigated for the Reynolds number range of 210 to 1,100. Experimental results show that the average convective heat transfer coefficient increases 14 and 11% and the bottom temperature of the heat sink decreases 2.2°C and 1.6°C by using Al2O3–H2O and TiO2–H2O nanofluid instead of pure distilled water, respectively.  相似文献   

16.
Russian Physics Journal - The paper deals with ZnO, ZnO:Al 5 wt.% and ZnO:Al 5 wt.% – SiO2 5 wt.% thin films obtained on glass substrates by the sol gel process from film-forming solutions...  相似文献   

17.
Nonmetallic inclusions in steel cause problems in steel products and steel production. In particular, an analysis of Al2O3 and MgO·Al2O3 spinel inclusions is important since they are one of the most harmful inclusions. A rapid and simple analysis of nonmetallic inclusions is required as the conventional analytical methods for nonmetallic inclusions are time-consuming. In this study, we propose a simple method to identify Al2O3 and MgO·Al2O3 spinel inclusions in steels. X-ray-excited optical luminescence (XEOL) analysis was selected as a promising method because it can rapidly identify sizes, shapes, and compositions of nonmetallic inclusions and can be performed in air. A model steel sample prepared by heating a mixture of Fe, Al, and MgO powders at 1550°C in argon atmosphere was used. XEOL images of the model steel sample showed that Al2O3 inclusions emitted blue and red luminescences. Using a filter attached to the camera, blocking light in the wavelength region above 650 nm, only the blue luminescence of the Al2O3 inclusions was observed. This was implemented as the luminescences of the Al2O3 inclusions appeared in both blue and red regions at wavelengths of 350, 485, 695, and 750 nm; consequently, the luminescences at 695 nm and 750 nm were blocked by the filter. In contrast, MgO·Al2O3 spinel inclusions emitted green luminescence (peak at 520 nm), unaffected by the filter. This indicates that we can simply identify Al2O3 and MgO·Al2O3 spinel inclusions by an XEOL image in the wavelength range of 420–650 nm.  相似文献   

18.
In order to find a new Er-doped host for near infrared (NIR) optical amplifiers, a study on the optimization of the erbium emission ions in the Y2O3–Al2O3–SiO2 system was performed. (100 ? x) Y3Al5O12 ? (x) SiO2 powders (x varies from 0 to 70, in mol%) with a fixed Er2O3 concentration of 1.0 mol% were synthesized by a modified Pechini method and heat-treated at 900 and 1000 °C. The photoluminescence (PL) spectra at 1540 nm of the 4I13/2 → 4I15/2 transition of Er3+ ions and the up-conversion spectra at visible region (2H11/2 + 4S3/2 + 4F9/2 → 4I15/2) upon 980 nm excitation were evaluated. Different techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were considered to evaluate crystallization and phase-evolution of the powders as a function of the silica content (x) and annealing temperature. The analyses were based on the comparison between two different solvents used in the preparation of the polymeric resins: ethanol and water. The optimal conditions for ethanol are quite different than the conditions for water used as solvent, confirming that the PL properties at the NIR region are highly sensitive to the changes in the host stoichiometry and processing conditions. The highest emission intensity at 1540 nm was observed for x = 30 for ethanol and x = 70 for water, treated at 900 and 1000 °C, respectively. This result could be attributed to the combination of low symmetry and good dispersion of the Er3+ions in these hosts.  相似文献   

19.
A glass matrix with nominal composition 50Li2O·45B2O3·5Al2O3 (mol%) was synthesized, and its physical properties were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and atomic force microscopy (AFM). The glass transition temperature T g, the crystallization-onset temperature T x,, the crystallization peak temperatures T c1 and T c2, and the fusion peak temperatures T m1 and T m2 were determined from at least two glass matrix phases to be approximately 382, 457, 486, 574, 761, and 787?°C, respectively, at 5?°C/min heating rate. Heat treatments at 450?°C for an increasing sequence of time intervals allowed control over the amount of crystallization. Additional information on the crystallization kinetics for the LBA glass matrix was gathered from AFM images, DTA thermograms, and XRD diffractograms. The latter technique showed that LiBO2 (ICDD-16568) and Li3AlB2O6 (ICDD-51754) phases are formed in the glass?Cceramic system. Debye?CScherrer analysis of the XRD peaks revealed a competition between the evolutions of crystal phases during heat treatment. Activation energies for crystallization, obtained from theoretical models applied to the DTA data showed that the crystallization is heterogeneous. The AFM images demonstrated that this heterogeneous crystallization starts at the surface of the LBA glass matrix and identified crystal sizes in agreement with the results of the Debye?CScherrer analysis. Our study shows that thermal and structural characterization techniques can be combined with theoretical results drawn from well-tested models to offer a unified view of crystallization in a glass?Cceramics system.  相似文献   

20.
《Journal of luminescence》1987,37(6):293-302
Quantum yields of the green Tb luminescence for 254 nm excitation of glass compositions in the system MO·Al2O3· B2O3·Tb2O3 (M = Mg, Ca, Sr, Ba and Zn) were studied in relation to absorption and excitation spectra. Yields as high as 80% were observed. The Tb 4f-5d absorption maximum ranges from 218 to 232 nm, always at a longer wavelength than the glass matrix absorption. The yield strongly depends on the spectral position of the 4f-5d absorption, due to competing impurity absorption at 254 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号