首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the addition of ethylene on the γ-ray-induced alternating copolymerization of ethylenimine and carbon monoxide was investigated. A mixture of ethylenimine, carbon monoxide, and ethylene was irradiated to produce a polymer containing these monomeric units. The infrared spectrum of the copolymer showed the characteristic absorption peaks of the secondary amide and ketone bond and was different from that of the reaction product of polyketone with ethylenimine and that of the γ-ray irradiation product of ethylene and poly-ß-alanine. The x-ray diffraction diagram of the copolymer was different from those of poly-ß-alanine and polyketone and exhibited an amorphous structure. Paper chromatographic analysis showed that the hydrolysis product of the copolymer contained ß-alanine and δ-aminovaleric acid. These results indicate that terpolymerization of ethylenimine, carbon monoxide, and ethylene took place under γ-ray irradiation and gave an amorphous polymer containing the units \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{} ({\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm NHCO}\rlap{}),\rlap{} ({\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm CO}\rlap{}),{\rm and}\rlap{} ({\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm NHCO}\rlap{}) $\end{document}  相似文献   

2.
3.
The copolymerization kinetics of ethylene and carbon monoxide has been studied for the catalysts: Pd(C5H7O2)2-P(C6H5)3-p-CH3C6H4SO3H in the medium of acetic acid (system A), and Pd(CH3COO)2-CF3COOH - (C6H5)2P(CH2)nP(C6H5)2(system B), where n=1−6, in the medium of methyl alcohol. The cationic palladium(II) -diphosphine complexes: (Dppp)2Pd(CF3COO)2 (I) and [(Dppp) Pd(μ-OH)2Pd(Dppp)] (CF3COO)2 (II) have been synthesized and investigated by IR, electrospray mass spectrometry and elemental analysis methods. A comparative study of the copolymerization kinetics in the presence of these complexes and system B has been carried out.  相似文献   

4.
The properties of the ruthenium (II) phosphine complexes [Ru(dppe)2(OTs)2] and [Ru{PhP(CH2CH2CH2PPh2)2}(OTs)2] as catalysts of alternating copolymerization of ethylene and carbon monoxide were studied. The catalytic activity of these complexes in the absence of cocatalysis is low, but it is substantially increased in the presence of trifluoroacetic acid or 1,4-benzoquinone. These compounds are the first ruthenium complexes which catalyze copolymerization of ethylene and CO. Translated fromAkademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1119–1121, June, 2000.  相似文献   

5.
The kinetics of the alternating copolymerization of ethylene with carbon monoxide has been studied in the presence of a palladium catalyst immolized on a polymer support in various media (methanol, toluene, heptane). In the case of hydrocarbon solvents, the activity of the supported catalyst is commensurable with the activity of a homogeneous system in methanol. The melting temperature of the resulting copolymer and its molecular mass depend on the solvent nature. The IR reflectance spectra of the active palladium complex and the ethylene-carbon monoxide copolymer are measured.  相似文献   

6.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2181–2182, September, 1990.  相似文献   

7.
The γ-radiation-induced free-radical copolymerization of ethylene and CO has been investigated over a wide range of pressure, initial gas composition, radiation intensity, and temperature. At 20°C., concentrations of CO up to 1% retard the polymerization of ethylene. Above this concentration the rate reaches a maximum between 27.5 and 39.2% CO and then decreases. The copolymer composition increases only from 40 to 50% CO when the gas mixture is varied from 5 to 90% CO. A relatively constant reactivity ratio is obtained at 20°C., indicating that CO adds 23.6 times as fast as an ethylene monomer to an ethylene free-radical chain end. For a 50% CO gas mixture, the above value of 23.6 and the copolymerization rate decrease with increasing temperature to 200°C. The kinetic data indicate a temperature-dependent depropagation reaction. Infrared examination of copolymers indicates a polyketone structure containing ? CH2? CH2? and ? CO? units. The crystalline melting point increases rapidly from 111 to 242°C., as the CO concentration in the copolymer increases from 27 to 50%. Molecular weight of copolymer formed at 20°C. increased with increasing CO, indicating M?n values >20,000. Increasing reaction temperature results in decreasing molecular weight. Onset of decomposition for a 50% CO copolymer was measured at ≈250°C.  相似文献   

8.
The kinetics of methoxymethyl methacrylate (MOMA) homopolymerization has been investigated in benzene, using azobis(isobutyronitrile) as an initiator. The rate of polymerization (Rp) could be expressed by Rp = k[AIBN]0.5 [MOMA]1.19. The overall activation energy was calculated to be 73.2 kJ/mol. Kinetic constants for MOMA polymerization were obtained as follows: kp/kt1/2 = 0.091 L1/2 · mol?1/2 · s?1/2; 2fkd = 1.37 × 10?5 s?1. The values of K and a in the Mark–Houwink equation, [η] = KMa, where K = 5.89 × 10?5 and a = 0.82 when M = M n and the solvent was benzene. The relative reactivity ratios of MOMA (M2) copolymerizations with styrene (r1 = 0.40, r2 = 0.58) were obtained. Applying the Q-e scheme led to Q = 0.78 and e = 0.67. The glass transition temperature (Tg) of poly(MOMA) was observed to be 64°C by DSC. Thermogravimetry of poly(MOMA) showed a 10% weight loss at 230°C in air.  相似文献   

9.
Terpolymers of carbon monoxide with ethylene and styrene are synthesized in the presence of supported palladium catalyst in toluene and heptane medium for the first time. The terpolymerization rate exceeds the rate of carbon monoxide and ethylene copolymerization. The maximum terpolymer yield amounts 7.9 g per g of supported catalyst per hour or 321 g per g of palladium per hour. The influence of reaction temperature, pressure, 1.4-benzoquinone amount and co-monomers mole ratio on the yield and the composition of terpolymer have been studied. The NMR 13C data obtained testify to a distribution of ethylene and styrene units in terpolymer with the predominance of short blocks at equal contents of comonomer units.  相似文献   

10.
11.
The kinetics of cyanomethyl methacrylate (CyMA) homopolymerization was investigated in acetonitrile with azobisisobutyronitrile as initiator. The rate of polymerization Rp was expressed by Rp = k[AIBN]0.49[CyMA]1.2 and the overall activation energy was calculated as 72.3 kJ/mol. Kinetic constants for CyMA polymerization were obtained as follows: kp/k = 0.10 L1/2s?1/2; 2fkd = 1.57 × 10?5s?. The relative reactivity ratios of CyMA(M2) copolymerization with styrene (r1 = 0.15, r2 = 0.29) and methyl methacrylate (r1 = 0.43, r2 = 0.75) in acetonitrile were obtained. Applying the Q-e scheme (in styrene copolymerization) led to Q = 1.64 and e = 0.98. The glass transition temperature Tg of poly(CyMA) was observed to be 91°C by thermomechanical analysis. Thermogravimetry of poly(CyMA) showed a 10% weight loss at 265°C in air.  相似文献   

12.
The palladium-catalyzed alternating copolymerization of fluoroalkenes, represented as CH(2)=CH-CH(2)-C(n)F(2n+1), with CO was performed using (R,S)-BINAPHOS (2e) as a ligand. The CH(2)-C(n)F(2n+1) group is the most electronegative substituent ever reported for the copolymerization (Taft's sigma value of 0.90 for CH(2)CF(3)). The copolymer obtained from CH(2)=CH-CH(2)-C(8)F(17) (1a) existed as a mixture of polyspiroketal and polyketone, while that from CH(2)=CH-CH(2)-C(4)F(9) (1b) was a pure polyspiroketal, as was revealed by infrared and (13)C-CP/MAS NMR spectroscopies. The terminal structure of the polymer from 1b was confirmed by MALDI-TOF MS spectrometry. Detailed NMR studies suggested that the much higher reactivity with (R,S)-BINAPHOS (2e) than that with the conventional ligand DPPP (2a) can be attributed to the unique 1,2-insertion of the fluoroalkene into acylpalladium species. The existence of an electronegative substituent on the alpha-carbon of the palladium center is successfully avoided in the 1,2-insertion mechanism.  相似文献   

13.
14.
Enantioselective, alternating copolymerizations of carbon monoxide with styrene, dicyclopentadiene, and methylcyclopentadiene dimer were carried out with a palladium catalyst modified by 1,4‐3,6‐dianhydro‐2,5‐dideoxy‐2,5‐bis(diphenyl phosphino)‐L ‐iditol. Chiral diphosphine was proven to be effective at enantioselective copolymerization. In the copolymers, some of the second double bonds of alternating poly(1,4‐ketone) were carbonylated. Optical rotation, elemental analysis, and spectra of 1H NMR, 13C NMR, and IR showed that the copolymers had isotactic, alternating poly(1,4‐ketone) structures. An oxidant and an organic acid were the promoters of the copolymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2919–2924, 2000  相似文献   

15.
16.
An alternating copolymer of methyl acrylate with carbon monoxide has been synthesized for the first time via coordination polymerization using palladium complexes of phosphine-sulfonic acid as catalysts. The highly controlled head-to-tail structure of the copolymer was confirmed by NMR spectra. Subsequent insertion of carbon monoxide and methyl acrylate to methylpalladium species provided gamma-ketoalkylpalladium 2. The present system apparently conquered the difficulty in coordination-insertion of CO to 2.  相似文献   

17.
The influence of the addition of different amounts of MeOH, H2O, and HCOOH on the activity of supported palladium catalyst in the copolymerization of CO with ethylene and the kinetic regularities of this reaction were studied for the first time. The maximum yield of the copolymer is attained when MeOH and H2O or HCOOH and H2O are simultaneously introduced into the reaction medium (toluene). The results obtained are consistent with the concepts about the role of protic agents in the formation of active intermediates and polymer molecules in the copolymerization of CO with ethylene in the presence of the homogeneous catalytic systems.  相似文献   

18.
Strictly alternating copolymers between olefins and carbon monoxide are synthesized using cationic palladium catalysts modified by phosphorus or nitrogen ligands. Basic chelate diphosphines as the ligand allow the regioregular copolymerization of aliphatic olefins thus affording, e.g. in the case of propene, poly(1-oxo-2-methyltrimethylene). Steric control of the copolymerization process towards the production of overwhelmingly isotactic copolymers is possible particularly when using atropisomeric ligands. In the case of styrene as the substrate and for all ligands employed the copolymerization process is regioregular. Prevailing syndiotactic structure is obtained with 1,10-phenanthroline or 2,2′-bipyridine as the ligand. Chelate thioether ligands allow the preparation of a completely atactic material. For 4-tert-butylstyrene an isotactic structure became accessible by using chiral bisoxazolidines. The prevailing structure of the copolymers of cyclopentene corresponds to a 1,3-enchainment of the olefin units most probably associated with a prevailing diisotactic structure  相似文献   

19.
The alternating copolymerization of carbon monoxide and ethylenimine to give poly-β-alanine could be initiated by γ-irradiation but hardly by α,α'-azobisisobutyronitrile (AIBN). It was found that in the case of the addition of olefin, this system could be copolymerized even by AIBN and that, in the γ-ray copolymerization of carbon monoxide and ethylenimine, the addition of olefin brought about an increase in the copolymer yield. No difference was observed between the nature of copolymers obtained by AIBN and those obtained by γ-irradiation, except in the system carbon monoxide–ethylenimine–ethylene. An increase in the amount of reacted olefin gave rise to an increase in copolymer yield. The melting points of the copolymers were in the range 295–335°C. The infrared spectra, x-ray diffraction diagrams, and NMR spectra of the copolymers were almost identical with that of poly-β-alanine obtained by the hydrogen-migration polymerization of acrylamide. Paper chromatographic analysis of the hydrolysis product of the copolymer showed the existence of β-alanine, ethylamine, and δ-aminovaleric acid homolog in the products. From these results, it was concluded that terpolymerization of carbon monoxide, ethylenimine, and olefin took place in the presence of AIBN or γ-irradiation which gave a crystalline solid copolymer containing the units of nylon 3 and nylon 5. A mechanism of this copolymerization was proposed on the basis of these results.  相似文献   

20.
The terpolymerization of ethylene, styrene, and carbon monoxide was accomplished by two different palladium‐based catalysts: a phosphine‐based ligand system and a nitrogen‐based ligand system. The range of possible compositions and the composition dependence of the properties of the resulting polymers were determined. These polymers were essentially carbon monoxide versions of the ethylene styrene interpolymers recently presented by Dow. A comparison between the two families of polymers is attempted. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 752–757, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号