首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiation-induced solid-state polymerization of binary systems consisting of acrylic monomer (acrylamide, acrylic acid) and organic compounds was investigated. In the previous paper on binary systems the authors reported that the rate of polymerization increased in the solid state (eutectic mixture systems). The mechanism of rate increase has been investigated by examination of phase diagrams, viscosities, and surface tension of the binary systems. Viscosity and surface tension are the measure of the molecular interaction of the two-component systems. In addition, the effect of linear crystal growth rate and half maximum width of the x-ray diffraction diagram of the crystallization process were determined. The larger the molecular interaction between the two components, the slower the linear crystal growth rate of monomer. The size of the monomer crystal decreases and the dislocation density of the monomer crystals increases in systems with large molecular interaction. Consequently it can be concluded that the physical structure of a binary solid system is the most important parameter determining the rate increase of solid-state polymerization. Dislocation on the grain boundary is more important than defects inside of the crystal lattice. It was found that the acceleration of polymerization rate is large in binary systems with larger molecular interaction. In some systems such as organic acid—amide systems with strong hydrogen bonds, glassy phases may be formed in which monomer may readily polymerize at very low temperatures.  相似文献   

2.
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by Tg (glass transition temperature) and Tv of the system (30–50°C higher than Tg), which turned to be functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the Tg of the glass-forming solvent. The composition and temperature dependences in the glycidyl methacrylate–triacetin system as a typical homogeneous polymerization system were studied in detail, and the polymerizations of hydroxyethyl methacrylate–triacetin and hydroxyethyl methacrylate–isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower Tg monomer and higher Tg solvent and the latter typifies a system consisting of higher Tg monomer and lower Tg solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to Tv and Tg of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect.  相似文献   

3.
The in-source polymerization of methacrylic acid in the solid state with γ-rays was studied. The conversion rates at various temperatures were obtained as well as the radical concentrations by the measurements of ESR spectrum. The rate of polymerization was found to be proportional to I0.65 at 0°C. The results could be interpreted on the basis of the assumption that the rate of propagation is proportional to the concentration of the propagating radical, of the monomer, and of the polymer. The addition of water to the monomer seems to accelerate the polymerization reaction. The change of the line shape of the propagating radical during polymerization was interpreted in terms of the change of the matrix which surrounds the propagating radical.  相似文献   

4.
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA–propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA–triacetin and HEMA–isoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore, in the HEMA–dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA–poly(methyl methacrylate) system were also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate.  相似文献   

5.
The effect of temperature and composition on the inflection point in the time–conversion curve and the saturated conversion was investigated in the radiation-induced radical polymerization of binary systems consisting of a glass-forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA)–triacetin and hydroxyethyl methacrylate (HEMA)–propylene glycol systems, the time–conversion curve has an inflection point at polymerization temperatures between Tvm (Tv of monomer system) and Tvp (Tv of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. Tv was found to be 30–50°C higher than Tg (glass transition temperature) and a monotonic function of composition (monomer–polymer–solvent). The acceleration effect continued to 100% conversion above Tvp, and no acceleration effect was observed below Tvm. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between Tgm (Tg of monomer system) and Tgp (Tg of polymer system). Tg was also a monotonic function of composition. No saturation in conversion was observed above Tgp, and no polymerization occurred below Tgm. In the polymerization of completely heterogeneous systems such as HEMA–dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% above Tg of pure HEMA, and no polymerization occurred below this temperature in this system.  相似文献   

6.
The general empirical rules about glass formation of organic compounds including monomers were studied. It was found that the difference of Tm (melting point) and Tg (glass transition temperature) was the most important factor in glass formation, that is, the glass-forming property of organic systems, mono- or multicomponent, could be expressed as a function of Tm and TmTg at the cooling temperature ?196°C. The glassforming property was further divided into four classes according to the relation between Tm and TmTg, and each class was related to several patterns in DTA curves. From these results it was clarified that the phases are completely or partially glassified depending on the different values of TmTg in eutectic and noneutectic compositions. The overall phase diagrams covering the whole composition with the variation of Tm and Tg were determined, and they also supported the relationship between TmTg and the glass-forming property. The distinct glass-forming property of binary systems with large molecular interaction was attributed to the great lowering of Tm and elevation of Tg in those systems. The effect of the number of components on glass formation was also studied; it was shown that if Tm, Tg, and ΔH (sum of heat of melting and of mixing) are given, the number of components necessary to glassification can be estimated.  相似文献   

7.
The post-polymerization of methacrylic acid in the solid state was studied. The decay of the trapped radicals was also observed by ESR measurements. The decay of trapped radicals is a first-order reaction below 0°C but a second-order reaction at + 10°C. The results of the post-polymerization were compared with the results of radical decay measurements. A kinetic scheme was proposed for the post-polymerization of methacrylic acid. The effect of conditions of monomer crystallization on the polymer yield was also investigated. Fine crystals gave a greater limiting conversion than large crystals. The addition of water to the monomer increased the polymer yield. The change in the ESR spectrum during post-polymerization was interpreted in terms of the change in the matrix which surrounds the propagating radicals.  相似文献   

8.
The in-source polymerization of trioxane in the solid state was investigated over a wide range of temperature and pressure, i.e., from 30 to 140°C and up to 7000 kg/cm2, respectively. In the polymerization that was carried out slightly below the melting point under pressure, the higher the pressure, the higher the rate of polymerization. It was confirmed that the maximum rate of solid-state polymerization of trioxane occurs near the melting points, even under elevated pressure. The rate of polymerization decreased with increasing pressure at constant temperature. The shape of the time–conversion curves may be classified into two types, i.e., one which is typical of high pressure and low temperature, and the other which is typical of low pressure and high temperature. Changes in the shape of the conversion—intrinsic viscosity curves occurred coincidentally. Thus, three regions for the different “polymerization characteristic” were determined as functions of polymerization temperature and pressure. Explanations are given for the above-mentioned polymerization characteristic.  相似文献   

9.
Using a statistical thermodynamic method we discuss the general shape of a free energy change versus composition curve for a binary copolymerization system. This simple theoretical approach gives reasonable agreement with the experimental results.  相似文献   

10.
The anomalous crystalline transition of methacrylic acid found by broad-line NMR measurements was studied in connection with the build-up and decay of trapped radicals. The build-up of radicals is smaller and the decay rate of the trapped radicals is faster in the low-temperature range (phase II), which gave the narrower maximum slope distance ΔHmsl of the NMR spectrum, than those in the higher temperature range (phase I), which gave the broader ΔHmsl. From these experiments it was concluded that in phase I the crystals have a more closely packed structure, resulting in a more rigid matrix for the trapped radicals than those in phase II. This interpretation is consistent with the temperature dependence of the ESR spectrum of the trapped propagating radicals previously reported. The existence of the crystalline transition was also confirmed by DSC measurements, and the effects of the crystallization conditions on the transition were investigated and were discussed with reference to the results of broad line NMR measurements.  相似文献   

11.
Bulk polymerization of chloroprene was studied at 25°C in a wide does rate range. Variations of the rate of polymerization (Rp) and molecular weight as a function of does rate were essentially the same as those in several monomers that are capab;e of radical and cationic polymerizations. The polymerization proceeds with radical mechanism at low dose rate ans with radical and cationic mechanism concurrently at high dose rate. The number-average molecular weight of the high-dose-rate was ca. 2400. Microstructure of the polymers was mainly of trans-1,4 unit with small fraction of cis-1,4 and 3,4-vinyl unit. Fractions of the vinyl unit and the inverted unit in trans-1,4 sequence which increased at high does rate inflected the change of dominant mechanism of polymerization.  相似文献   

12.
Octadecyl methacrylate (mpc ≈ 12°C.) polymerized readily in the solid state in the temperature range ?30 to +12°C. after gamma irradiation at ?196°C. The initial rate of polymerization and the “limiting” conversion increased with radiation dose and temperature. The temperature dependence of the rate corresponded to an “apparent” activation energy of 20 kcal./mole. Difficulties were experienced with polymerization during separation of the polymer from residual monomer, but these were minimized by using low radiation doses and a hot, selective solvent. The maximum conversion achieved was 70%. The polymer was crosslinked, even at low conversions.  相似文献   

13.
The postirradiation polymerization of the crystalline, anhydrous, monohydrate, and dihydrate forms of zinc methacrylate was studied. The anhydrous salt polymerized readily in the temperature range 50–150°C., the monohydrate did not polymerize at all, and the dihydrate polymerized at about 100°C. Aging of the anhydrous salts greatly affected the rate of polymerization; this was shown to be due mainly to the formation of peroxides by reaction with air. Polymerization could be initiated thermally, without irradiation, in monomer which had been aged in contact with air, apparently by decomposition of the peroxides. The rate of the postirradiation polymerization was increased when air was present during irradiation and decreased when air was present during polymerization. The rate of polymerization increased with temperature, corresponding to an apparent activation energy of 10 kcal./mole. The dihydrate lost one molecule of water rapidly under vacuum at 20°C. and slowly on heating at 50°C. in a sealed vessel, forming a crystalline monohydrate. Slow thermal polymerization and rapid postirradiation polymerization occurred at 100°C. without the formation of any monohydrate, indicating that the polymerization was concurrent with the phase change.  相似文献   

14.
Radiation-induced solid-state polymerizations of complexes of N-tert-butylacrylamide, N-tert-amylacrylamide, and N-tert-hexylacrylamide with zinc chloride and zinc bromide have been studied. An accelerating effect of temperature and an inhibiting effect of oxygen on the polymerization process were observed. The activation energies have been established. The influence of monomer structure as well as the halide used on the polymerization rate have been discussed and some regularities have been pointed out. The polymers obtained show good solubilities in common solvents, which proves that they are not crosslinked.  相似文献   

15.
Differential scanning calorimetry DSC has been applied to the analysis of drugcyclodextrin binary systems in order to gain experimental evidence of the interaction and determine the stoichiometry of the inclusion compound. Two model systems, paracetamolbetacyclodextrin and vinburnineg-ammacyclodextrin were tested through the comparison of thermal behaviors of interacted and non-interacted mixtures containing excess drug. DSC allowed a confirmation of both interaction and stoichiometry of the inclusion compounds.The authors wish to thank Prof. Amedeo Marini for helpful discussion and criticism.  相似文献   

16.
Radiation-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) was investigated. HEMA and GMA formed a stable supercooled or glassy phase by themselves at low temperatures. It was found that the initial polymerization rate was proportional to ca.0.5 power of the dose rate in the region of relatively high temperatures and the dose rate exponent changed sharply to 1.0 at a temperature Tr, at which the viscosity of monomeric systems reached ca. 103 cP as the temperature decreased. Moreover, a maximum in the polymerization rate–temperature curve occurred at Tv. It was deduced that the polymerization mechanism changed from the stationary to the nonstationary at Tv. The temperature at which a minimum of the polymerization rate occurred could be calculated kinetically considering the viscosity dependency of termination rate, and it agreed well with that obtained experimentally. It was deduced that occurrence of the minimum polymerization rate above Tv was attributable mainly to the decrease in termination rate due to diffusion control.  相似文献   

17.
The solid-state polymerization of maleimide by γ- and ultraviolet irradiation was carried out in binary systems with succinimide, maleic anhydride, and acenaphthylene. Polymaleimide obtained from the solid-state polymerization of maleimide by γ-rays was amorphous, while that obtained from the solid-state polymerization by ultraviolet rays was highly crystalline. In the maleimide–succinimide system the rate of polymerization reached a maximum nearly at the eutectic composition when the polymerization was carried out by γ-irradiation. With ultraviolet irradiation the rate of polymerization became higher with increasing content of succinimide in the feed. In the maleimide–maleic anhydride system a copolymer of both constituents was formed by γ-irradiation, but almost no homopolymer was produced. On the other hand, two kinds of polymers, a crystalline copolymer and an amorphous one, were produced by ultraviolet irradiation. The results were compared with those obtained from the copolymerization in solution. In the maleimide-acenaphthylene system the main products with ultraviolet irradiation was the dimer of acenaphthylene.  相似文献   

18.
The effect of temperature and conversion on the polymerization rate at higher conversion was investigated with regard to the γ-ray-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the supercooled phase. The polymerization rate changed from acceleration to depression at various conversions, depending on the polymerization temperature. It was found that Tv at which the viscosity of the system became ca. 103 cpoise influenced the shape of the polymerization time–conversion curve. The experimentally obtained conversion reflection point in the polymerization time–conversion curve agreed with the conversion where the polymerization temperature is the same as the calculated Tv of the system. When the polymerization temperature was lower than Tv of the monomer, no acceleration of the polymerization occurred. When the polymerization temperature was higher than Tv of the polymer, no depression of the polymerization rate was observed. The effect of temperature on the saturated conversion (final conversion) was also examined in terms of Tg of the polymerization system. The experimentally obtained saturated conversion agreed with the conversion where the polymerization temperature is the same as the calculated Tg of the system.  相似文献   

19.
Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation; similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at Tv which shifted to higher levels of temperature as well as to Tg under high pressure. Polymerizability in the supercooled state also increased under increased pressure.  相似文献   

20.
The kinetics of radiation polymerization on a solid catalyst is discussed, under the condition that only linear termination of the chain takes place. All the kinetic equations are balance equations of particles of each type adsorbed by unit mass of the catalyst, and this makes it possible to account for the effect on the kinetics of the time dependence of the magnitude of the part of its surface on which the reactions we are considering may take place. Integro-differential equations are used for calculating the molecular weight distribution of the resulting polymer; this ensures higher accuracy of the formulas obtained than when differential equations are used and makes it possible to eliminate a number of limitations generally involved in the transition to differential equations. An expression has been found for the molecular weight distribution of the polymer product which allows for the possibility of radiation-induced catalytic polymerization on the resulting adsorbed polymer. Expressions have been derived for the average molecular weight and yield (weight and molecular) of the polymer formed. Asymptotic formulas have been obtained (for large irradiation times) for all the above values. The conclusions that can be drawn concerning the mechanism of the process based on a comparison of the formulas obtained with kinetic curves plotted from experimental data are given. It is shown how such a comparison can be utilized for calculating the rate constants for polymerization and chain termination reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号