首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为探讨破片式战斗部空中爆炸下冲击波与破片的耦合作用机制,通过分析冲击波和破片在空气中的运动规律,在考虑壳体对冲击波强度的影响下,建立了冲击波与破片耦合作用区间的理论计算模型,并采用相关文献试验结果进行了对比。在此基础上,结合实例讨论了耦合作用区间随各影响因素的变化规律。结果表明,战斗部装填系数、装药爆速、壳体厚度以及能量分配对耦合作用区间的影响较大,而装药爆热、破片质量及破片形状对耦合作用区间的影响较小;随着装填系数、装药爆热和爆速、破片质量及冲击波能量与破片动能的比值的增大,耦合作用区间均减小;而随着壳体厚度和破片形状不规则度的提高,耦合作用区间增大。  相似文献   

2.
针对柱状装药的周向预制破片战斗部,结合无量纲分析方法和爆炸驱动理论,确定了影响破片和冲击波相遇位置的关键参数,给出了由缩比战斗部推广预测原型战斗部爆炸产生的破片冲击波作用时序的方法。采用ANSYS/LS-DYNA有限元软件进行数值模拟,对比验证了理论分析和数值试验结果,分析了战斗部缩比比例对冲击波和破片作用时序的影响。结果表明:缩比模型与原型战斗部爆炸产生的破片和冲击波的相遇位置之比和相遇时间之比主要取决于两模型的质量比,在不考虑破片速度衰减时,两模型中载荷相遇位置之比和相遇时间之比等于其质量比的0.33次方。受破片速度衰减影响,该方法仅适用于质量缩比不小于0.2的模型。  相似文献   

3.
为研究爆轰驱动下椭圆截面自然破片杀伤战斗部壳体的膨胀破裂过程以及壳体破片径向速度分布,建立了椭圆截面战斗部三维模型。通过AUTODYN-3D软件,采用Lagrange算法模拟爆轰驱动下椭圆截面自然破片战斗部壳体的膨胀断裂过程,研究了端面单点中心起爆方式下短长轴断裂时间差与短长轴比的关系,以及不同起爆点、不同短长轴比和不同装填比(即装药与壳体质量之比)对椭圆截面战斗部径向破片速度分布的影响。结果表明:与端面中心单点起爆、端面长轴双点偏心起爆和端面短长轴四点偏心起爆相比,端面短轴双点偏心起爆方式对椭圆截面战斗部壳体破片径向速度的增益效果最好。装填比一定时,短、长轴断裂时间以及短、长轴断裂时间差与短长轴比呈线性关系,战斗部壳体膨胀过程中截面形状的实时短长轴比与加载时间呈线性关系;随着短长轴比的增大,战斗部壳体破片径向速度增益逐渐减小。短长轴比一定,装填比小于1时,破片速度随方位角增大呈正弦趋势上升,且短、长轴方向破片速度差与装填比呈线性关系。  相似文献   

4.
为了获得弹体材料性能对破片形成的影响规律,应用破片战斗部设计软件,数值计算了82钢、50SiMnVB钢、40CrMnSiB钢及30CrMnSiNi2A钢等4种材料形成破片的情况,得到了4种材料形成的破片的飞散角、初速及质量分布的变化规律,并进行了破片质量分布的实验研究。结果表明,不同合金钢材料对形成的破片飞散角与初速的影响不大,且沿弹体轴向方向的变化规律相同,其中破片飞散角沿弹轴方向先减小后增大,破片的最大初速出现在距起爆点约72.5%圆筒长度处;但是对破片质量分布情况的影响较大,随着材料极限抗拉强度的增加和断裂韧性的降低,弹体破碎程度升高,总破片数增加了39.3%。  相似文献   

5.
倪晋平  田会  杨雷 《光学技术》2008,34(1):152-155
针对战斗部常规生产检验,提出了采用多个光幕靶、数据采集仪和位置标识器进行测速的方法。光幕靶探测破片穿过的时刻,数据采集仪记录波形并提取破片穿过光幕靶的时间,位置标识器可以识别破片飞行的方向角度,从而计算破片实际飞行的靶距。介绍了测速系统的组成,光幕靶设计以及测速系统的冲击与破片杀伤防护措施。采用战斗部静爆试验验证了所提方法,结果表明所提方法准确有效。给出了破片穿过光幕的瞬态波形。  相似文献   

6.
冲击波与破片的运动关系直接决定两者对目标的联合毁伤效果,采用有限体积方法和网格自适应技术,对高温高压气体载荷作用下圆形刚体破片的运动规律、冲击波的衰减规律以及两者的运动关系进行了数值模拟研究。结果表明,高温高压气团形成的冲击波与破片作用发生反射和透射,在破片前后形成的压力差是导致其加速的主要原因。在破片数量一定的情况下,破片距离高温高压气团中心越远,初速越小。当破片与高温高压气团中心的间距相同时,破片数量越多,初速越大。同时研究发现,冲击波与刚体球存在复杂的追逐关系:当初速较大时,破片和冲击波相遇两次;初速减小时,二者相遇一次;初速进一步减小时,二者不能相遇。冲击波与刚体球破片的前后关系将会影响它们对目标的毁伤是否存在耦合关系。  相似文献   

7.
为了研究低附带战斗部的非金属破片飞散特性,结合某低附带杀伤战斗部静爆威力实验,对战斗部爆炸产生的非金属破片初速以及速度衰减情况进行了分析。基于能量守恒得到了包含壳体结构和材料强度因素的破片初速公式;基于破片在空气中飞行运动情况的分析,通过对球形破片阻力公式和等效面积进行修正,得到了非金属自然破片的速度衰减规律。所得结果较好地解释了战斗部静爆实验中的破片终点效应情况,亦可为该类战斗部破片毁伤效应评估提供一种分析方法。  相似文献   

8.
采用光滑粒子(SPH)法研究了短药柱在钢筒内爆炸形成破片的特征,采用Grady层裂准则描述钢筒的层裂破坏,破坏模式为随机破坏,服从Mott分布。分析了破片的质量分布和速度,计算结果表明:钢筒经过一定膨胀后,首先在装药端部位置破裂,然后爆心附近的钢筒解体成破片,如果是封闭钢筒,钢筒端部也是形成破片的重要部位。爆心附近的破片质量小、速度高;端部的破片质量较大、速度低;爆心附近的破片相对集中。  相似文献   

9.
为使战斗部具有多种定向毁伤模式并实现一定程度上的可控毁伤,提出了一种扇形装药的可变形定向破片战斗部,该战斗部可实现轴向展开和侧向展开2种模式。采用AUTODYN软件进行破片场的数值模拟。首先,基于战斗部单元体分析获得了距离轴心25 mm处的最佳起爆点位置;其次,对整个战斗部进行分析,在轴向展开模式下分析了轴向展开角度对破片飞散速度、破片数目和破片空间分布的影响,发现轴向展开角在60°~75°范围内毁伤效果较佳;最后,在侧向展开模式下分析了整个战斗部的破片速度和破片空间分布情况,结果表明破片具有明显的定向飞散特性。  相似文献   

10.
爆速是爆炸复合的主要参数之一。采用玻璃微球作为敏化剂和稀释剂,研究玻璃微球尺寸、含量对乳化炸药爆速的影响,然后调配爆速为2.230km/s的低爆速乳化炸药,利用铝蜂窝板配置蜂窝结构炸药,进行铝-钢复合板的爆炸焊接。试验结果表明:炸药密度随着玻璃微球含量的增加而减小;小尺寸玻璃微球含量(质量分数)小于2%或者大于35%时,乳化炸药发生拒爆现象;玻璃微球含量大于7%且小于35%时,炸药爆速随着玻璃微球含量的增大而减小。小尺寸(5~100μm)玻璃微球的敏化效果和调节爆速效果比大尺寸(70~200μm)玻璃微球好,铝蜂窝结构炸药用于铝-钢爆炸焊接可以获得良好的结合质量。  相似文献   

11.
为了进一步提高复合战斗部的毁伤输出效率,基于一种可形成聚能侵彻体、预制破片和自然破片3种毁伤元的破甲杀伤复合战斗部结构,应用LS-DYNA数值仿真软件,研究了起爆点位置、起爆直径和起爆点数量对复合战斗部各毁伤元成型和能量输出的影响,讨论了实现战斗部毁伤威力可调的技术路径。结果表明:起爆点距药型罩越远、数量越多、起爆直径越大,由药型罩形成的聚能侵彻体的头部速度越高,头尾速度差和长径比越大,速度增益最高可达50%,可以实现爆炸成型弹丸(EFP)到聚能杆式侵彻体(JPC)转换;在装药内部轴线阵列多点起爆时,聚能侵彻体的成型基本仅与离药型罩最近的起爆点有关。对于预制破片,装药高度60 mm(P2)处起爆速度最快,增加起爆点数量和增大起爆直径可以有效提高预制破片的最高速度,但整体上最低速度仍在600 m/s上下波动,变化并不显著。对于壳体形成的自然破片,以平均速度来表征时,整体变化并不明显,速度增益不足10%,但合理的起爆方式可使壳体断裂形成的自然破片更均匀,有利于调整破片质量分布。通过控制起爆方式可在一定程度上实现复合战斗部毁伤威力可调,但对于破片速度的调控仍需进一步研究。  相似文献   

12.
为了解决战斗部爆炸过程中,因爆炸物当量较大造成爆燃火球持续时间长,覆盖面积大,近场位置破片速度参数难于获取的问题,提出一种以激光光幕为有效传感区域的光电收发一体的测试方法。通过分析三种不同类型战斗部爆炸火光特征光谱分布可知,在0.3~1.0 μm波段内火光相对光强度较低。以此为依据,采用定距测时原理和原向反射技术,由固体激光器、菲涅尔透镜、窄带滤光器、高速光电传感器等关键光学元件构建破片速度参数获取的光学系统。系统光路收发一体,结构紧凑,窄带滤光片与激光光源配合使用避开火光光谱,有效抑制背景光的干扰。采用该系统进行了不同型号、当量的战斗部静爆破片速度参数测试现场实验,通过美国NI数据采集系统记录数据并对信号进行去噪和识别,成功获取了较高信噪比的波形信号。实验结果表明:本方案可完成爆心10~15 m附近破片速度的准确测试,最小可测破片尺寸为4 mm,获取破片速度可达1 200 m·s-1,与靶板测试结果对比可知捕获率优于95%。由于采用菲涅尔透镜形成矩形光幕,光幕上下的光强分布一致,水平方向光强均匀度达到80%以上,因此系统还可初步区分预制破片速度与尺寸的对应关系。  相似文献   

13.
对大直径X70钢油气管道在接触爆炸下的破坏效应进行了野外化爆实验,获得了不同装药量及不同壁厚条件下钢管道的接触爆炸破坏特征。实验结果表明:接触爆炸载荷作用下管壁迎爆面局部破坏明显,且呈花瓣形破口,同时产生具有较大质量和动能的爆炸破片,破片与对面管壁碰撞后形成凹坑,甚至发生贯穿现象。基于动力有限元程序LS-DYNA及Lagrangian-Eulerian耦合方法,对钢管在外接触爆炸载荷作用下的非线性动态响应过程进行三维数值模拟,得到管壁迎爆面的变形破坏及对面管壁在爆炸破片碰撞下的后效作用过程,计算结果与实验结果符合良好。研究结果为在役油气管道的抗爆能力分析及安全性评估提供了参考依据。  相似文献   

14.
偏心起爆战斗部随机破片数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用AUTODYN-3D软件和基于Mott破片分布理论的Stochastic随机破碎模型,对破碎型偏心起爆战斗部的破片形成进行了三维数值模拟,对比分析了3种起爆方式下自然破片的飞散特性以及偏心起爆时不同起爆半径随机破片的飞散特性。结果表明:偏心单点和偏心多点起爆在目标区域产生的破片数比中心点起爆分别提高了37.12%和62.86%,且破片质量小,破片的利用率可以提高4.01%~6.08%;偏心单点和偏心多点起爆的平均速度增益为25.95%和28.37%;对于偏心起爆,随着起爆半径的减小,目标区域的随机破片数减小,轴向速度和径向速度也随之减小。  相似文献   

15.
切割式双模战斗部毁伤元成型及侵彻钢靶特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 基于60 mm弧锥结合罩爆炸成型弹丸(EFP)装药,设计了一种在药型罩前适当位置安装可抛掷的十字形网栅的切割式双模战斗部结构,其具有生成单个EFP或者多爆炸成型弹丸(MEFP)的功能;根据目标属性,可选择性地改变战斗部的毁伤元成型模式,实施最有效的打击。利用LS-DYNA程序,对两种模式毁伤元成型及侵彻45钢靶过程特性进行了数值模拟,模拟结果与地面静爆实验结果吻合较好。研究表明,该战斗部形成的单个EFP能贯穿25 mm厚45钢靶,可有效打击重装甲目标;经网栅切割后能形成5片具有一定质量和方向性、可贯穿6 mm厚45钢靶的EFP破片,显著提高了对轻装甲目标的毁伤概率。  相似文献   

16.
建立了包含数值方法和分析方法的威力仿真方法。考虑数值计算的规模和复杂度,采用爆轰计算获得初始时刻破片场,利用分析方法描述破片飞散和破片作用目标的过程。采用该威力仿真方法,实现了对破片场形成、破片飞散、破片作用目标的全过程描述。数值计算采用LS-DYNA软件,为了获得战斗部初始时刻破片场,开发了接121处理程序。利用分析方法,建立了破片飞散和破片毁伤性能评估模型,飞散模型中考虑空气阻力等因素的影响,破片毁伤性能评估模型中采用THOR方程预估破片剩余速度、剩余质量和最大穿透厚度,从而获得破片弹道、破片威力参数和破片对靶板的毁伤效果。通过对虚拟靶板上命中破片进行统计,计算出破片命中靶板密度分布和破片飞散角分:布,完成破片战斗部威力仿真试验。在威力仿真方法的基础上,建立了系统仿真模型(图1)。采用面向对象的Visual Studio.NET编程语言,实现威力仿真软件的编码。  相似文献   

17.
为提高定向战斗部的毁伤效能,明确序贯起爆参数对定向战斗部毁伤效能的影响,运用LS-DYNA有限元程序,采用破片速度差累加和飞散角累加的方法,研究了不同序贯起爆参数下破片初始威力参数,利用毁伤概率法,计算了不同序贯起爆参数下战斗部对地面军用车辆的毁伤效能。结果表明:起爆线个数和起爆线夹角主要影响破片速度大小,起爆延时时间主要影响破片速度大小和飞散角正负占比。相对于偏心一线和三线序贯起爆,偏心两线序贯起爆在落高为7~9 m时有7.5~25.0 m2的毁伤面积。当起爆线夹角由30°增大到120°,落高为4~8 m时,战斗部对地面军用车辆的毁伤面积降低3.9%~60.3%。序贯起爆的延时时间由零增加到0.75倍的相邻起爆点间爆轰波传播时间,落高为4~8 m时,战斗部的毁伤面积增加8.4%~87.2%。当起爆方式采用偏心两线序贯起爆,起爆线夹角取30°~60°,延时时间取0.50~0.75倍的相邻起爆点间爆轰波传播时间时,破片战斗部对地面军用车辆目标具有较好的毁伤效能。  相似文献   

18.
在验证了所用方法有效性的基础上,采用有限元软件LS-DYNA数值模拟了等面密度聚脲涂覆钢板结构及单一钢板在空爆下的动态响应,分析了聚脲涂覆位置对其抗爆性的影响;在此基础上,通过量纲分析的方法讨论了爆心距、炸药质量、涂覆聚脲厚度对钢板变形的影响规律。结果表明,聚脲涂覆在钢板上的位置影响其抗爆性能。其他变量一定的情况下,钢板中心最大位移随爆心距的增加近似呈指数递减趋势;改变炸药质量时,钢板中心最大位移随炸药质量的增加近似呈线性递增趋势;改变涂覆聚脲厚度时,钢板中心最大位移随涂层厚度的增加近似呈线性递减趋势。  相似文献   

19.
破片对带铝壳炸药的冲击起爆数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 采用AUTODYN-2D数值模拟软件,应用冲击起爆Lee-Tarver模型,对钢破片撞击带铝壳Octol炸药的起爆问题进行了数值模拟,分析了冲击起爆机理及破片形状、着速、铝壳厚度等因素对炸药起爆特性的影响规律,利用“升-降”法得到了破片对Octol炸药的临界冲击起爆速度。研究结果对反导战斗部破片杀伤元素的设计具有指导意义。  相似文献   

20.
为研究聚焦式战斗部在炸药驱动下破片的轴向飞散特性,提高其轴向杀伤威力,以Shapiro公式为理论指导,对聚焦式战斗部壳体母线进行设计,并对战斗部装药结构进行优化改进。利用LS-DYNA有限元程序及ALE算法对战斗部的爆炸过程进行模拟,以破片轴向分布为指标,对装药结构、壳体母线曲率与破片飞散特性的关系进行了分析。结果表明,"工"字形圆台装药和壳体母线曲率能够有效控制战斗部破片的轴向飞散,并得到了圆台的合理高度。此结果对于深入开展战斗部的破片飞散方向控制及应用研究提供了重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号