首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
超疏水导电聚苯胺的界面聚合   总被引:1,自引:0,他引:1  
采用界面聚合和无模板法相结合的方法, 以具有疏水链的全氟癸二酸(PFSEA)为掺杂剂, 通过调节苯胺单体和FeCl3氧化剂的浓度实现了聚苯胺三维微/纳米结构形貌和尺寸的可控制备. 扫描电子显微镜测量结果显示, 聚苯胺是由一维纳米纤维自组装形成的三维微球结构; 红外吸收光谱和紫外-可见吸收光谱结果表明, 聚苯胺微球为掺杂态. 室温下, 该微/纳米结构聚苯胺微球的电导率为 9.6×10-3 S/cm, 表面水接触角为161.4°, 表现出半导体特性和超疏水性.  相似文献   

2.
以苯胺为单体, 过硫酸铵为氧化剂, 通过改变不同的掺杂剂, 采用"无模板"法合成了具有不同浸润性的聚苯胺微/纳米结构, 并得到超疏水聚苯胺微/纳米结构. 采用红外吸收光谱、 紫外-可见吸收光谱、 X射线衍射及扫描电镜对聚苯胺微/纳米结构及形貌进行了表征, 测定了聚苯胺微/纳米结构的接触角, 并通过Tafel极化曲线和电化学交流阻抗研究了不同疏水性的聚苯胺微/纳米结构在0.1 mol/L H2SO4溶液中对碳钢的腐蚀防护作用, 探讨了聚苯胺微/纳米结构的表面浸润性对腐蚀防护性能的影响. 研究结果表明, 随着聚苯胺微/纳米结构疏水性的增强, 对碳钢的腐蚀防护作用增强, 当掺杂剂为全氟辛酸时所制备的超水聚苯胺微/纳米结构表现出最佳的防腐蚀性能(η= 94.70%).  相似文献   

3.
磁性聚苯胺纳米微球的合成与表征   总被引:1,自引:0,他引:1  
报道了具有核壳结构的Fe3O4-聚苯胺磁性纳米微球的合成方法和表征结果.微球同时具有导电性和磁性能.在优化的实验条件下,可得到饱和磁化强度Ms为55.4 emu/g,矫顽力Hc为62 Oe的磁性微球.微球的导电性随着微球中Fe含量的增加而下降.微球的磁性能则随着Fe含量的增加而增大.Fe3O4磁流体的粒径和磁性聚苯胺微球的粒径均在纳米量级.纳米Fe3O4粒子能够提高复合物的热性能.实验表明,磁流体和聚苯胺之间可能存在着一定的相互作用,但这种相互作用较为复杂,难于研究  相似文献   

4.
纳米结构型PMAA/CdS复合微球的微凝胶模板法制备研究   总被引:13,自引:0,他引:13  
以微凝胶为模板,利用微凝胶三维网络结构对无机沉积反应的限域和导向作用,制备了具有核-壳结构的聚甲基丙烯酸/硫化镉(PMAA/CdS)有机/无机复合微球材料.复合微球的制备包含两个基本步骤首先,以反相乳液聚合法得到包含Cd(Ac)2的聚甲基丙烯酸微凝胶;然后,在搅拌过程中向反应体系中缓慢通人H2S气体,使镉离子沉积为CdS,经洗涤处理后得到PMAA/CdS复合微球.SEM观察表明,复合微球表面呈现均一的微纳米结构,这种结构可因微球制备条件的不同而不同.而且,超声处理可使微球表面趋于光滑.X射线衍射分析表明复合微球中CdS处于晶态,具有立方结构.此外,复合微球因CdS的存在而具有光致发光特性.  相似文献   

5.
以十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺与聚乙二醇(PEG)及Fe3O4的混合氯仿溶液,采用静电纺丝(spinning technology)方法制备含Fe3O4纳米颗粒的导电聚苯胺(PANI)/PEG/Fe3O4复合微球.SEM结果表明,电纺所得的PANI/PEG/Fe3O4复合微球结构依赖于PEG聚合物浓度、静...  相似文献   

6.
采用化学沉淀法制备ZnO微球,利用柠檬酸三钠(TCD)避光还原硝酸银在ZnO表面沉积银粒子制备Ag/ZnO复合材料.利用XRD、SEM、TEM、EDS、FTIR、UV-vis DRS、PL、BET等对Ag/ZnO的结构、组分、形貌及光谱性质进行了表征,通过紫外及可见光照降解甲基橙溶液评价样品的光催化性能.结果表明:ZnO纳米微球是由ZnO纳米片相互交错构筑而成的具有丰富孔道的分级结构,Ag纳米粒子均匀沉积在ZnO纳米片上.Ag的沉积显著增加了ZnO的可见光吸收,猝灭了ZnO荧光,提高了ZnO催化活性.  相似文献   

7.
SiO2/PVAc无机-有机复合微球的合成及其膜性能研究   总被引:1,自引:0,他引:1  
以纳米二氧化硅粒子(SiO2)为稳定剂,在少量反应型阴离子乳化剂——烯丙氧基羟丙磺酸钠(HAPS)作助稳定剂的情况下,制备了具有草莓型结构的二氧化硅/聚醋酸乙烯酯(SiO2/PVAc)无机-有机纳米复合微球.研究表明,纳米SiO2与PVAc的氢键作用是形成这种单分散草莓型SiO2/PVAc无机-有机纳米复合微球的关键.透射电镜(TEM)观察显示,纳米SiO2吸附在PVAc表面,形成草莓型结构.讨论了纳米二氧化硅溶胶的种类和用量、乳化剂种类对复合微球形态及其膜性能的影响,并讨论了复合微球的形成机理.  相似文献   

8.
纳米复合材料是近年来化学、物理及材料科学研究最活跃的领域之一 .有机 -无机复合纳米微球的制备和性能研究是这一研究领域的一个重要分支 .有机 -无机复合纳米微球兼有有机材料、无机材料和纳米材料的特性 ,特别是“球形”结构使其具有微观的“滚动”特性而倍受摩擦学工作者的青睐 .目前聚合物纳米微球的摩擦学性能研究已取得了重要进展 [1~ 4 ] .段标等 [3,5]认为聚合物微球的润滑机理是在摩擦过程中 ,微球进入摩擦表面 ,因其弹性和球形 ,而起到一定的滚动作用 ;高载荷下 ,微球变形并在摩擦表面形成聚合物润滑膜 .然而有关聚合物 /无机…  相似文献   

9.
壳聚糖修饰PLGA阳离子型纳米微球的制备与表征   总被引:7,自引:1,他引:6  
采用单乳化-溶剂(O/W)挥发技术制备表面带正电荷的壳聚糖(CHS)修饰聚乙/丙交酯(PLGA)纳米微球(PLGA/CHS), 通过正交试验优化了纳米微球的制备条件. 结果表明, 微球粒径可控制在150~200 nm内, 在pH=4时, 纳米微球表面电位最高为55 mV. 影响微球粒径的主要因素是聚合物的浓度, CHS的分子量和浓度以及介质的pH值对微球表面电位也有明显影响. 制备粒径较小而表面电位较高的PLGA/CHS纳米微球条件为: ρ(CHS)=3 mg/mL, ρ(PLGA)=10 mg/mL, Vo/Va=1/4. SEM图像显示经CHS修饰的PLGA的纳米微球形状规整, 荧光显微观察和XPS分析结果证实CHS包覆于微球表面.  相似文献   

10.
通过有机化学合成法先在碳纳米管表面接枝上苯胺单体,然后在不锈钢电极表面在硫酸溶液中采用循环伏安法电化学沉积聚合制得碳纳米管/聚苯胺(CNTs/PANI)纳米复合材料.扫描电子显微镜和傅立叶变换红外光谱表征所得材料的微观结构和基团,循环伏安和恒流充放电测试用于考察所得CNTs/PANI纳米复合材料的电化学性能.所得结果与...  相似文献   

11.
Summary: A highly hydrophobic surface with a water contact angle of 148.0° has been constructed by depositing salicylic acid‐doped polyaniline (PANI‐SA) spheres on a glass substrate using a template‐free method. The hydrophobicity originates from the contribution of the air trapped in the inter‐space of a rough surface aggregated by micro‐ and nanospheres. Moreover, the deposition time strongly affects the hydrophobicity of the PANI‐SA spheres deposited on the substrate. The formation mechanism and hydrophobic origin of the PANI‐SA spheres deposited on the substrate are discussed.

The PANI films prepared at 60 min polymerization time is composed of co‐existing nano‐ and microspheres (left). The ability of the layers to trap large amounts of air makes the surface highly hydrophobic and results in a water contact angle of 148.0° (right).  相似文献   


12.
New types of conducting composites using red mud as an inorganic substrate and polyaniline as the conducting phase were prepared. Red mud/polyaniline (RM/PANI) composites were synthesized in acidic aqueous solution by the chemical oxidative polymerization of aniline using ammonium peroxydisulfate as the oxidant. The composites exhibit conductivities in the 0.42-5.2 S cm−1 range, depending on the amount of polyaniline. They were characterized by infrared and UV-vis spectroscopy, scanning electron microscopy and X-ray diffraction. The IR and X-ray results show that PANI is deposited on the RM surface. The composites have a globular structure and the PANI globules synthesized on the surface of RM are smaller than those prepared under the same conditions without the substrate. Thermogravimetric analysis was used for investigation of the thermal stability of the composites. The thermal stability of the conductivity of RM/PANI composites was studied by ageing at 125 °C, the conductivity being measured in situ during this process.  相似文献   

13.
The polyaniline (PANI) prepared by the pulse galvanostatic method (PGM) or the galvanostatic method on a stainless steel substrate from an aqueous solution of 0.5 mol/l H2SO4 with 0.2 mol/l aniline has been studied as an electroactive material in supercapacitors. The electrochemical performance of the PANI supercapacitor is characterized by cyclic voltammetry, a galvanostatic charge–discharge test and electrochemical impedance spectroscopy in NaClO4 and HClO4 mixed electrolyte. The results show that PANI films with different morphology and hence different capacitance are synthesized by controlling the synthesis methods and conditions. Owing to the double-layer capacitance and pseudocapacitance increase with increasing real surface area of PANI, the capacitive performances of PANI were enhanced with increasing real surface area of PANI. The highest capacitance is obtained for the PANI film with nanofibrous morphology. From charge–discharge studies of a nanofibrous PANI capacitor, a specific capacitance of 609 F/g and a specific energy density of 26.8 Wh/kg have been obtained at a discharge current density of 1.5 mA/cm2. The PANI capacitor also shows little degradation of capacitance after 1,000 cycles. The effects of discharge current density and deposited charge of PANI on capacitance are investigated. The results indicate that the nanofibrous PANI prepared by the PGM is promising for supercapacitors.  相似文献   

14.
The process of polyaniline (PANI), poly(2-methoxyaniline) (POMA) nanotubes formation was investigated. Polyaniline and poly(2-methoxyaniline) nanotubes were prepared by chemical in situ deposition within the pores of polycarbonate membranes. It was found that the formation of polyaniline and poly(2-methoxyaniline) proceeds by two substantially different mechanisms. In the case of PANI, the polymer is first formed in the polymerization solution (the solution containing the monomer and oxidant, where the polycarbonate substrate is placed), and then it precipitates on/into the membrane. In the case of POMA, the oxidized 2-methoxyaniline molecules are first adsorbed on polycarbonate surface, and then, as a consequence of their accumulation, they recombine to form the polymer.  相似文献   

15.
Nickel foam-supported porous NiO film was prepared by a chemical bath deposition technique, and the NiO/polyaniline (PANI) film was obtained by depositing the PANI layer on the surface of the NiO film. The NiO film was constructed by NiO nanoflakes, and after the deposition of PANI, these nanoflakes were coated by PANI. As an anode for lithium ion batteries, the NiO/PANI film exhibits weaker polarization as compared to the NiO film. The specific capacity after 50 cycles for NiO/PANI film is 520 mAh g−1 at 1 C, higher than that of NiO film (440 mAh g−1). The improvement of these properties is attributed to the enhanced electrical conduction and film stability of the electrode with PANI.  相似文献   

16.
The deposition of the polyaniline (PANI) films was monitored using the quartz crystal microbalance (QCM) technique. The films were grown from an aqueous dilute hydrochloric acid solution by the chemical oxidation of aniline using potassium dichromate (KDC). The effect of the initial molar ratio of the KDC/aniline on the yield and the growth rate of the PANI films were studied. There is no optimum initial molar ratio of KDC/aniline of PANI film deposition. Also there was a small depletion period and no degradation to the deposited PANI films. The order of the polymerization kinetics was studied with respect to KDC. The UV-visible spectra of the PANI films grown onto a glass support immersed into the bulk solution were measured. The absorption of the PANI film with the time of polymerization was compared to the growth of the PANI film thickness with time determined from the QCM technique. The characteristics of the PANI film deposition were compared to the corresponding ones that were observed during the oxidative polymerization of aniline with ammonium persulphate (APS).  相似文献   

17.
我们将有机发光分子选择性地吸附在PANI结构上形成有机发光图案, 作为诱导模板聚苯胺的结构可以通过纳米压印和沉积相结合的方法制备. 通过在PANI 结构的空隙处修饰氟代硅烷增大样品表面不同区域的亲疏水差异, 从而诱导有机发光分子的选择性吸附.  相似文献   

18.
Polyaniline (PANI)/carbon nanotubes (CNTs) composite electrode material was prepared by in situ chemical polymerization. The structure and morphology of PANI/CNTs composite are characterized by Fourier infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. It has been found that a flocculent PANI was uniformly deposited on the surface of CNTs. The supercapacitive behaviors of the PANI/CNTs composite materials are investigated with cyclic voltammetry, galvanostatic charge/discharge, impedance, and cycle life measurements. The results show that the PANI/CNTs composite electrodes have higher specific capacitances than CNT electrodes and better stability than the conducting polymers. The capacitance of PANI/CNTs composite electrode is as high as 837.6 F g−1 measured by cyclic voltammetry at 1 mV s−1. Besides, the capacitance retention of coin supercapacitors remained 68.0% after 3,000 cycles.  相似文献   

19.
Polyaniline (PANI) films were deposited by electrochemical polymerization of aniline monomer on a fluorine-doped glass substrate at room temperature under different electric field directions. The as-synthesized PANI films obtained at different growth cycles were characterized by AC impedance spectroscopy and scanning electron microscopy (SEM). The results revealed that the film morphology, transport kinetics, and electrical properties are strongly dependent on the electric field direction and magnitude of the applied field during electropolymerization. The SEM morphology and AC impedance (modulus spectroscopy) indicate that a more homogeneous, high-porous, and conducting PANI film is induced by horizontal electric field direction (HEFD) electrodeposition, whereas the modulus spectroscopy of the PANI film deposited by vertical electric field direction (VEFD) reveals that VEFD deposition favours two-dimensional growth of PANI. The obtained polymer is more of dielectric in nature due to preferable dendritic growth which is supported by SEM analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号