首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.  相似文献   

2.
A series of first row transition metal complexes of the tripodal ligand 2,2',2"-nitrilotribenzoic acid H3L has been prepared and characterised by X-ray crystallography: Mononuclear [M(L)]- species [Cu(H2O)4]3[Cu(L)(H2O)]6.25H2O (2), [Co(H2O)6][Co(L)(H2O)].8H2O (4), [Zn(H2O)6][Zn(L)(H2O)].8H2O (5) and a neutral [M(L)] complex [Fe(III)2(L)(H2O)3].5H2O (8) are formed as well as dimeric [M(L)]2 2- species (HNEt3)2[Cu(L)]2.2CH3CN (1), (HNEt3)3[Ni(L)]2(ClO4).H2O (3), (HNEt3)2[Fe(II)(L)]2.2CH3CN (6) and (HNEt3)2[Fe(III)2(L)2(mu-O)](7). The complexes display a unique variation in the M-N distance (2.09 A for Cu(II) to 3.29 A for Fe(III)) to the bridgehead triphenylamine donor and are classified into compounds with "On","Off" and "Intermediate" N-coordination. The trigonal-bipyramidal coordination polyhedron changes towards tetrahedral in the intermediate and octahedral in the Off-state. The M-N distance of individual complexes is reversibly tuned by external chemical input such as changes of metal ion oxidation state (Fe(II)/Fe(III)) or variation of the axial coligand as a consequence of solvent or pH variation. Possible reasons for the exceptional tolerance of the M-N bond to distance variations are discussed under consideration of gas phase DFT calculations of [Zn(L)]-.  相似文献   

3.
Studies on Ln[Co(CN)(6)].nH(2)O (Ln = lanthanoid ions; n = 5, 4) by means of thermal analysis, Raman spectroscopy, and X-ray crystallography were carried out, in order to establish the boundary structures in the series. From the thermal analyses, it was confirmed that the complexes include Ln'[Co(CN)(6)].5H(2)O (Ln' = La to Nd) or Ln"[Co(CN)(6)].4H(2)O (Ln = Sm to Lu). Raman spectra of the complexes suggested a different classification. The complexes having five H(2)O molecules displayed two single bands associated with nu(C-N) at around 2170 cm(-1). The complexes having four H(2)O molecules showed two distinct sets of bands of nu(C-N): one was a singlet, and the other was split. Nevertheless, the complex with Nd, which has five H(2)O molecules, exhibited single and split bands. This implies that the symmetry around Nd is lower than that of other complexes having five H(2)O molecules. According to the X-ray crystal analysis, the Pr complex is Pr[Co(CN)(6)].5H(2)O, hexagonal, P6(3)/m, with a = 7.473(1) ?, c = 14.212(1) ?, and Z = 2. On the other hand, the Nd complex is Nd[Co(CN)(6)].5H(2)O, orthorhombic, C222(1), with a = 7.458(4) ?, b = 12.918(3) ?, c = 14.172(2) ?, and Z = 4. Although the Nd complex has five H(2)O molecules, the crystals are orthorhombic and belong to the space group C222(1). Therefore, the structure of Nd[Co(CN)(6)].5H(2)O is regarded as the boundary structure: one of the coordinated water molecules is disordered, although the structure is essentially the same as that of Pr[Co(CN)(6)].5H(2)O. As Pr in Pr[Co(CN)(6)].5H(2)O changes into Nd, the symmetry around the metal atom is lowered and thus the bands associated with nu(CN) in Nd[Co(CN)(6)].5H(2)O and Sm[Co(CN)(6)].4H(2)O outnumber those of Pr[Co(CN)(6)].5H(2)O. The 5H(2)O complex with Nd loses one water molecule by thermal dissociation and changes into the more stable 4H(2)O complex, whose crystals are orthorhombic and belong to the space group Cmcm. Pr[Co(CN)(6)].5H(2)O also changes into the 4H(2)O complex, orthorhombic and Cmcm, when it dehydrates.  相似文献   

4.
用溶胶-凝胶法制得了Fe-Al-P-O催化剂,采用IR、XRD、TEM、BET、TPR和微反等技术研究了催化剂的物化性质和反应性能。实验结果表明,Fe1/2-Al1/2-PO4由10 nm左右 FePO4和AlPO4微晶组合而成,其晶格氧的活泼性大于单纯FePO4,AlPO4在Fe1/2-Al1/2-PO4中起到分散FePO4微晶的作用;Fe1/2-Al1/2-PO4的反应性能与原料气组成密切相关,丙烯与O2的选择氧化产物主要是丙烯醛,原料气中加入H2后,反应产物以环氧丙烷为主,同时还有部分丙烯醛,原料气中引入水蒸气后,可进一步增加环氧丙烷的选择性及减少丙烯醛的产率;在0.1 MPa、200 ℃、C3H6/O2/H2/H2O/N2=1∶1∶1∶1∶6(mol比)和空速1 200 h-1条件下,丙烯的转化率为8.9%,环氧丙烷的选择性为81.0%。  相似文献   

5.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

6.
Two new cyanorhenate complexes of potential utility in constructing magnetic and photomagnetic materials are reported. Reaction of (Bu4N)CN with [ReCl6]2- in acetonitrile affords yellow (Bu4N)3[Re(CN)7] (1), featuring the pentagonal bipyramidal complex [Re(CN)7]3-. The spectral and magnetic properties of 1 indicate that the complex has an S = 1/2 ground state with considerable anisotropy in the g tensor. In aqueous solution, 1 reacts with Mn2+ ions to generate the three-dimensional cyano-bridged solid [fac-Mn(H2O)3][cis-Mn(H2O)2][Re(CN)7].3H2O (2) containing diamagnetic [Re(CN)7]4-. Addition of KIO4 to the reaction solution, originally intended to prevent reduction of the rhenium during solid formation, instead yields white (Bu4N)3[Re(CN)8] (3). As crystallized in K3[Re(CN)8].2MeCN (4.2MeCN), the diamagnetic [Re(CN)8]3- complex adopts a nearly perfect square antiprismatic coordination geometry. In solution, this species behaves analogously to the isoelectronic [M(CN)8]4- (M = Mo, W) complexes, apparently converting to a dodecahedral geometry and photooxidizing under UV radiation to give paramagnetic [Re(CN)8]2-.  相似文献   

7.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

8.
We developed an FIA system equipped with a chemiluminescence detector using a mixed chemiluminescence reagent of luminol and 1,10-phenanthroline for the detection of metal ions and metal complexes. The carrier, mixed chemiluminescence reagent comprising luminol, 1,10-phenanthroline, and cethyltrimethylammonium bromide, and H2O2 solutions were fed by corresponding pumps at a definite flow rate. Sample solutions dissolving hematin, [Co(NH3)4(H2O)2]2(SO4)3, CuSO4, NiCl2, K3[Fe(CN)6], and K4[Fe(CN)6] were analyzed as models by the means of the present FIA system. Solutions of hematin, [Co(NH3)4(H2O)2]2(SO4)3, CuSO4, and NiCl2 were detected as positive peaks, as usual. The order of the catalytic activity of these samples for the present chemiluminescence reaction using the mixed chemiluminescence reagent was [Co(NH3)4(H2O)2]2(SO4)3 > hematin > CuSO4 > NiCl2. On the other hand, sample solutions of K3[Fe(CN)6] and K4[Fe(CN)6] were detected as negative peaks and were determined over the ranges of 1 x 10(-8) - 1 x 10(-6) M with a detection limit of 1 x 10(-8) M and 2 x 10(-8) - 4 x 10(-6) M with a detection limit of 2 x 10(-8) M, respectively. Their negative peaks were observed reproducibly with a relative standard deviation of 2 - 5%.  相似文献   

9.
A series of isomorphous M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Co, Ni, Zn; Cu is similar) coordination polymers was synthesized from the reaction of M(II) with KAu(CN)(4); they consist of octahedrally coordinated metal centres with four equatorial water molecules and trans-axial N-cyano ligands from [Au(CN)(4)](-) moieties, generating a linear 1-D chain of M(H(2)O)(4)[Au(CN)(4)]-units. An additional interstitial [Au(CN)(4)](-) unit forms AuN and hydrogen bonds with adjacent chains. The Cu(II) system readily loses water to yield Cu[Au(CN)(4)](2)(H(2)O)(4), which was not structurally characterized. The magnetic properties of these polymers were investigated by a combination of SQUID magnetometry and zero-field muon spin relaxation (ZF-μSR). Only weak antiferromagnetic interactions along the chains are mediated by the [Au(CN)(4)]-units, but the ZF-μSR data indicates that interchain interactions yield a phase transition to a magnetically ordered state for Cu[Au(CN)(4)](2)(H(2)O)(4) below 0.6 K, while for M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Co), depopulation of zero-field split Kramer's doublets to an effective "S = 1/2" ground state yields a transition to a spin-frozen magnetic state below 0.26 K. On the other hand, only a simple slowing-down of spins above 0.02 K is observed for the more weakly zero-field split M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Ni) complexes.  相似文献   

10.
Simple mixing of H3Co(CN)6 and ZnCl2 in methanol resulted in precipitates of [ZnCl]+2[HCo(CN)6]2?, constituting a new type of double metal cyanide (DMC) catalyst exhibiting a high performance in carbon dioxide (CO2)/propylene oxide (PO) copolymerization. High‐molecular‐weight poly(propylene carbonate‐co‐propylene oxide)s [poly(PC‐co‐PO)s] (Mn~40,000) were consistently obtained with high carbonate fractions (~60 mol %) and a high selectivity (>95%) with the new type of DMC catalyst. Conventional preparation of the DMC catalyst using K3Co(CN)6 and ZnCl2 required removing KCl through thorough washing and resulted in lower carbonate fractions (10–40 mol %), which depended on the washing conditions. Feeding hydrophobic diols such as 1,10‐decanediol as chain transfer agent preserved the high carbonate fraction (~60%) and enabled precise control of the molecular weight, including preparation of a low‐molecular‐weight poly(PC‐co‐PO)‐diol (Mn ~2000), which was a flowing viscous liquid with a low Tg (?30 °C) suitable for polyurethane applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4811–4818  相似文献   

11.
New chiral catalyst systems were developed for the reaction of carbon dioxide with propylene oxide (PO) at atmospheric pressure to generate enantiomerically enriched propylene carbonate (PC). The best selectivity was achieved with a Co(III)(salen)-trifluoroacetyl complex and bis(triphenylphosphoranylidene)ammonium fluoride (PPN+F-) as catalysts, affording PC in 40% yield and 83% ee (selectivity factor = 19). In addition, PC was prepared for the first time by kinetic resolution of PO with tetrabutylammonium methyl carbonate (TBAMC, nBu4N+ (-)OOCOMe). With TBAMC as "activated CO2", up to 71% ee was obtained.  相似文献   

12.
The synthesis and characterization (X-ray crystallography, UV/vis spectroscopy, electrochemistry, ESI-MS, and (1)H, (13)C, and (59)Co NMR) of the complexes [Co(L)(O(2)CO)]ClO(4)xH(2)O (L = tpa (tpa = tris(2-pyridylmethyl)amine) (x = 1), pmea (pmea = bis((2-pyridyl)methyl)-2-((2-pyridyl)ethyl)amine) (x = 0), pmap (pmap = bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine) (x = 0), tepa (tepa = tris(2-(2-pyridyl)ethyl)amine) (x = 0)) which contain tripodal tetradentate pyridyl ligands and chelated carbonate ligands are reported. The complexes display different colors in both the solid state and solution, which can be rationalized in terms of the different ligand fields exerted by the tripodal ligands. Electrochemical data show that [Co(tepa)(O(2)CO)](+) is the easiest of the four complexes to reduce, and the variation in E(red.) values across the series of complexes can also be explained in terms of the different ligand fields exerted by the tripodal ligands, as can the (59)Co NMR data which show a chemical shift range of over 2000 ppm for the four complexes. [Co(pmea)(O(2)CO)](+) is fluxional in aqueous solution, and VT NMR spectroscopy ((1)H and (13)C) in DMF-d(7) (DMF = dimethylformamide) over the temperature range -25.0 to 75.0 degrees C are consistent with inversion of the unique six-membered chelate ring. This process shows a substantial activation barrier (DeltaG(#) = 58 kJ mol(-1)). The crystal structures of [Co(tpa)(O(2)CO)]ClO(4)xH(2)O, [Co(pmea)(O(2)CO)]ClO(4).3H(2)O, [Co(pmap)(O(2)CO)]ClO(4), and [Co(tepa)(O(2)CO)]ClO(4) are reported, and the complexes containing the asymmetric tripodal ligands pmea and pmap both crystallize as the 6-isomer. The carbonate complexes all show remarkable stability in 6 M HCl solution, with [Co(pmap)(O(2)CO)](+) showing essentially no change in its UV/vis spectrum over 4 h in this medium. The chelated bicarbonate complexes [Co(pmea)(O(2)COH)]ZnCl(4), [Co(pmap)(O(2)COH)][Co(pmap)(O(2)CO)](ClO(4))(3), [Co(pmap)(O(2)COH)]ZnCl(4)xH(2)O, and [Co(pmap(O(2)COH)]ZnBr(4)x2H(2)O can be isolated from acidic aqueous solution, and the crystal structure of [Co(pmap)(O(2)COH)]ZnCl(4)x3H(2)O is reported. The stability of the carbonate complexes in acid is explained by analysis of the crystallographic data for these, and other slow to hydrolyze chelated carbonate complexes, which show that the endo (coordinated) oxygen atoms are significantly hindered by atoms on the ancillary ligands, in contrast to complexes such as [Co(L)(O(2)CO)](+) (L = (NH(3))(4), (en)(2), tren, and nta), which undergo rapid acid hydrolysis and which show no such steric hindrance.  相似文献   

13.
The reactions between (TPP)AlX, where TPP = tetraphenylporphyrin and X = Cl, O(CH(2))(9)CH(3), and O(2)C(CH(2))(6)CH(3), and propylene oxide, PO, have been studied in CDCl(3) and have been shown to give (TPP)AlOCHMeCH(2)X and (TPP)AlOCH(2)CHMeX compounds. The relative rates of ring opening of PO follow the order Cl > OR > O(2)CR, but in the presence of added 4-(dimethylamino)pyridine, DMAP (1 equiv), the order is changed to O(2)CR > OR. From studies of kinetics, the ring opening of PO is shown to be first order in [Al]. Carbon dioxide inserts reversibly into the Al-OR bond to give the compound (TPP)AlO(2)COR, and this reaction is promoted by the addition of DMAP. The coordination of DMAP to (TPP)AlX is favored in the order O(2)C(CH(2))(6)CH(3) > O(2)CO(CH(2))(9)CH(3) > O(CH(2))(9)CH(3). The microstructure of the poly(propylene carbonate), PPC, formed in the reactions between (TPP)AlCl/DMAP and (R,R-salen)CrCl and rac-PO/S-PO/R-PO and CO(2), has been investigated by (13)C [(1)H] NMR spectroscopy. The ring opening of PO is shown to proceed via competitive attack on the methine and methylene carbon atoms, and furthermore attack at the methine carbon occurs with both retention and inversion of stereochemistry. On the basis of these results, the reaction pathway leading to ring opening of PO can be traced to an interchange associative mechanism, wherein coordination of PO to the electrophilic aluminum atom occurs within the vicinity of the Al-X bond (X = Cl, OR, O(2)CR, or O(2)COR). The role of DMAP is two-fold: (i) to labilize the trans Al-X bond toward heterolytic behavior, and (ii) to promote the insertion of CO(2) into the Al-OR bond.  相似文献   

14.
Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.  相似文献   

15.
Two structural series, including seven isomorphous heterodinuclear complexes, [Ln(DMSO)4(H2O)3(mu-CN)M(CN)5].H2O ([La-Fe] (1), [Pr-Fe] (2), [Pr-Co] (3), [Nd-Fe] (4), [Nd-Co] (5), [Sm-Fe] (6) and [Sm-Co] (7)), and seven isostructural 2-D stair-like cyano-bridged bimetallic assemblies, [Ln(DMSO)2(H2O)(mu-CN)4M(CN)2]n ([La-Fe]n (8), [Pr-Fe]n (9), [Pr-Co]n (10), [Nd-Fe]n (11), [Nd-Co]n (12), [Sm-Fe]n (13) and [Sm-Co]n (14)) (DMSO = dimethylsulfoxide), have been rationally prepared by a facile approach, a ball-milling method, and characterized by X-ray diffraction and magnetic measurements. The isomorphous structures, in conjunction with the diamagnetism of the Co(3+) and La(3+) ions, allow an approximation to the nature of coupling between the iron(III) and lanthanide(III) ions in the Ln(3+)-Fe(3+) complexes. The Ln(3+)-Fe(3+) interaction is ferromagnetic for the dinuclear [Pr-Fe] (2), [Nd-Fe] (4), and [Sm-Fe] (6) systems and for the 2-D [Pr-Fe]n (9), [Nd-Fe]n (11), and [Sm-Fe]n (13) assemblies.  相似文献   

16.
17.
Dawson结构杂多酸盐催化合成碳酸丙烯酯   总被引:3,自引:0,他引:3  
碳酸丙烯酯(PC)是一种性能优良的高沸点、高极性的有机溶剂,在有机合成、化妆品、电池电解质和脱碳溶剂等领域中具有重要应用.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - Four ionic cobalt hexacyanidoferrate(II) complexes with formulae [Co(NH3)6]4[Fe(CN)6]3·12H2O (1) [Co(NH3)6]2Cl2[Fe(CN)6]·4H2O (2),...  相似文献   

19.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

20.
Pentagonal-bipyramidal complexes [Co(DABPH)X(H(2)O)]X [X = NO(3) (1), Br (2), I (3)] were synthesized, and their magnetic behavior was investigated. Simulation of the magnetization versus temperature data revealed the complexes to be highly anisotropic (D ≈ +30 cm(-1)) and the magnitude of the anisotropy to be independent of the nature of the axial ligands. The reaction of 1 with K(3)[M(CN)(6)] (M = Cr, Fe) produces the pentametallic clusters [{Co(DABPH)}(3){M(CN)(6)}(2)(H(2)O)(2)] [M = Cr (4), Fe (5)]. Both clusters consist of three {Co(DABPH)} moieties separated by two {M(CN)(6)} fragments. In 4, the central and terminal Co(II) ions are bound to cyanide groups cis to one another on the bridging {Cr(CN)(6)}, whereas in 5, the connections are via trans cyanide ligands, resulting in the zigzag and linear structures observed, respectively. Magnetic investigation revealed ferromagnetic intramolecular interactions; however, the ground states were poorly isolated because of the large positive local anisotropies of the Co(II) ions. The effects of the local anisotropies appeared to dominate the behavior in 5, where the magnetic axes of the Co(II) ions were approximately colinear, compared to 4, where they were closer to orthogonal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号