首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.  相似文献   

2.
3.
The interfacial and bulk properties of submicron oil-in-water emulsions simultaneously stabilised with a conventional surfactant (either lecithin or oleylamine) and hydrophilic silica nanoparticles (Aerosil?380) were investigated and compared with emulsions stabilised by either stabiliser. Emulsions solely stabilised with lecithin or oleylamine showed poor physical stability, i.e., sedimentation and the release of pure oil was observed within 3 months storage. The formation and long-term stability of silica nanoparticle-coated emulsions was investigated as a function of the surfactant type, charge, and concentration; the oil phase polarity (Miglyol?812 versus liquid paraffin); and loading phase of nanoparticles, either oil or water. Highly stable emulsions with long-term resistance to coalescence and creaming were formulated even at low lecithin concentrations in the presence of optimum levels of silica nanoparticles. The attachment energy of silica nanoparticles at the non-polar oil-water interface in the presence of lecithin was significantly higher compared to oleylamine in line with good long-term stability of the former compared to the sedimentation and release of oil in the latter. The attachment energy of silica nanoparticles at the polar oil-water interface especially in the presence of oleylamine was up to five-times higher compared to the non-polar liquid paraffin. The interfacial layer structure of nanoparticles (close-packed layer of particle aggregates or scattered particle flocs) directly related to the free energy of nanoparticle adsorption at both MCT oil and liquid paraffin-water interfaces.  相似文献   

4.
The equilibrium and kinetic aspects of the adsorption of alkyltrimethylammonium surfactants at the silica-aqueous solution interface have been investigated using optical reflectometry. The effect of added electrolyte, the length of the hydrocarbon chain, and of the counter- and co-ions has been elucidated. Increasing the length of the surfactant hydrocarbon chain results in the adsorption isotherm being displaced to lower concentrations. The adsorption kinetics indicate that above the cmc micelles are adsorbing directly to the surface and that as the chain length increases the hydrophobicity of the surfactant has a greater influence on the adsoption kinetics. While the addition of 10 mM KBr increases the CTAB maximal surface excess, there is no corresponding increase for the addition of 10 mM KCl to the CTAC system. This is attributed to the decreased binding efficiency of the chloride ion relative to the bromide ion. Variations in the co-ion species (Li, Na, K) have little effect on the adsorption rate and surface excess of CTAC up to a bulk electrolyte concentration of 10 mM. However, the rate of adsorption is increased in the presence of electrolyte. Slow secondary adsorption is seen over a range of concentrations for CTAC in the absence of electrolyte and importantly in the presence of LiCl; the origin of this slow adsorption is attributed to a structural barrier to adsorption.  相似文献   

5.
The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration.  相似文献   

6.
Long-chain amidosulfobetaine surfactants, 3-(N-fattyamidopropyl-N,N-dimethyl ammonium) propanesulfonates (n-DAS, n > 18), are insoluble in pure water due to their high Krafft temperature (T(K)), while they are soluble when inorganic salt is added to the surfactant solution as the T(K) of these zwitterionic surfactants is decreased. The influence of the salt content and ionic species of the added electrolytes on the T(K) of the series of amidosulfobetaine surfactants was examined by means of UV-vis spectrophometry and visual inspection. It was found that the T(K) of these surfactants depends strongly on not only the hydrophobic alkyl length (n), but also the salinity of the aqueous environment. When the salt concentration is increased from 0 to 100 mM, the T(K) shows a sharp decrease; when the salinity is fixed between 100 and 2000 mM, the T(K) varies linearly with n with a slope of ~7.7 irrespective of the salt species and the salt content. When the salt concentration is further increased above 2000 mM, a linear function is still observed, but the slope increases slightly.  相似文献   

7.
Resonance-enhanced second harmonic generation (SHG) has been used to probe the solvatochromic behavior of two small, aromatic chromophores adsorbed to the aqueous/cyclohexane, liquid/liquid interface. SHG spectra of p-nitrophenol (PNP) and 2,6-dimethyl-PNP (dmPNP) indicate that these two chromophores sample markedly different environments. PNP sees a polar, waterlike environment, whereas solvent polarity surrounding dmPNP is dominated by the nonpolar, organic phase. Results suggest that subtle changes in solute structure can change the distribution of solutes across an interface and thus change a solute's local solvation environment.  相似文献   

8.
This paper reports a study on the aggregation and rheological behavior of the family of O, O’-bis(sodium 2-alkylcarboxylate)-p-dibenzenediol (referred to as Cm?2Cm, m?=?10, 12, 14, respectively) in aqueous solution using dynamic light scattering, 1H NMR and rheology measurements. The results showed that all three surfactants formed large network-like aggregates at low concentrations. However, C10?2C10 formed small compact micelles simultaneously but neither C12?2C12 nor C14?2C14 did. These network-like aggregates were transformed into the wormlike micelles with increasing the surfactant concentration. The length of alkyl tails was found to strongly affect the viscoelasticity of wormlike micellar solutions. From C10?2C10, C12?2C12 to C14?2C14 in turn, the system developed rapidly from the viscous fluid to typically viscoelastic solution and then to a solid-like gel. The scaling exponents of the concentration dependence of both zero-shear viscosity (η 0) and plateau elastic modulus (G) greatly exceeded the theoretic predictions, showing fast micellar growth and strong entanglements between the wormlike micelles. For C14?2C14 that had the longest alkyl tails in this series, the wormlike micelles formed at 140?mmol L?1 were quite long and the micellar reptation dominated over the scission and recombination. This system yielded a viscosity as high as 2.20?×?104 Pa?s at 25 °C.  相似文献   

9.
The viscoelasticity at a corn oil-water interface of films of sodium caseinate, and of sodium caseinate plus glyceryl monostearate (GMS) and glyceryl distearate (GDS), have been examined. Caseinate films exhibited little viscoelasticity, but in the presence of GMS and GDS significant viscoelasticity developed. The magnitude of the viscoelasticity parameters was influenced by the GMS/GDS ratio employed at any caseinate concentration. Optimum values of the parameters were obtained at a 5/2 GMS/GDS ratio. This was attributed to association of caseinate with the glycerides, which had themselves entered into some form of association prior to adsorption of caseinate.  相似文献   

10.
11.
A biconical bob interfacial shear rheometer was used to study the mechanical properties of asphaltenic films adsorbed at the oil-water interface. Solutions of asphaltenes isolated from four crude oils were dissolved in a model oil of heptane and toluene and allowed to adsorb and age in contact with water. Film elasticity (G') values were measured over a period of several days, and yield stresses and film masses were determined at the end of testing. The degree of film consolidation was determined from ratios of G'/film mass and yield stress/G'. Asphaltenes with higher concentrations of heavy metals (Ni, 330-360 ppm; V, 950-1000 ppm), lower aromaticity (H/C, 1.24-1.29), and higher polarity (N, 1.87-1.99) formed films of high elasticity, yield stress, and consolidation. Rapid adsorption kinetics and G' increases were seen when asphaltenes were near their solubility limit in heptane-toluene mixtures (approximately 50% (v/v) toluene). In solvents of greater aromaticity, adsorption kinetics and film masses were reduced at comparable aging times. Poor film forming asphaltenes had yield stress/G' values ((1.01-1.21) x 10(-2)) more than 4-fold lower than those of good film forming asphaltenes. n-heptane asphaltenes fractionated by filtering solutions prepared at low aromaticity (approximately 40% toluene in mixtures of heptane and toluene) possessed higher concentrations of heavy metals and nitrogen and higher aromaticity. The less soluble fractions of good film forming asphaltenes exhibited enhanced adsorption kinetics and higher G' and yield stress values in pure toluene. Replacing the asphaltene solutions with neat heptane-toluene highlighted the ability of films to consolidate and become more elastic over several hours. Adding resins in solution to a partially consolidated film caused a rapid reduction in elasticity followed by gradual but modest consolidation. This study is among the first to directly relate asphaltene chemistry to adsorption kinetics, adsorbed film mechanical properties, and consolidation kinetics.  相似文献   

12.
Lipopeptides are an important group of biosurfactants expressed by microorganisms. Because they are well-known for being biocompatible, biodegradable, and highly surface active, they are attractive for a wide range of applications. Natural lipopeptide surfactants are however impure; it is hence difficult to use them for exploring the structure-function relation. In this work, a series of cationic lipopeptide surfactants, C(14)K(n) (n = 1-4), where C denotes the myristic acyl chain and K denotes lysine (Lys), have been synthesized, and their interfacial behavior has been characterized by studying their adsorption at the silicon/water interface (bearing a thin native oxide layer) using spectroscopic ellipsometry and neutron reflection (NR). The dynamic adsorption was marked by an initial fast step within the first 2-3 min followed by a slow molecular relaxation process over the subsequent 20-30 min. The initial rate of time-dependent adsorption and the equilibrated adsorbed amount showed a steady decrease with increasing n, indicating the impact of the molecular size, structure, and charge. NR revealed the formation of sandwiched bilayers from C(14)K(n), similar to conventional surfactants such as nonionic C(12)E(6) and cationic C(16)TAB. However, the electrostatic attraction between K and the silica surface caused confinement of the K groups, forcing the head segments into a predominantly flat-on conformation. This characteristic structural feature was confirmed by the almost constant thickness of the headgroup regions ranging from 8 to 11 ? as determined from NR combined with partial deuterium labeling to the acyl tail. An increase in area per molecular pair with n resulted directly from increasing the footprint. As a result, the hydrophobic back-to-back tail mixing and acyl chain tilting rose with n. The extent of chain-head intermixing became so intensified that the C(14)K(4) bilayer could be approximated to a uniform layer distribution.  相似文献   

13.
We simulated the interface between liquid water and a stationary phase of tethered n-C18 alkyl chains at a thermodynamic state of low pressure and water vapor-liquid coexistence. The interfacial water (oxygen atom) density profile so obtained is compared with a precisely defined proximal density of water molecules (oxygen atoms) conditional on the alkyl chain configurations. Though the conventional interfacial density profile takes a traditional monotonic form, the proximal radial distribution of oxygen atoms around a specific methyl (methylene) group closely resembles that for a solitary methane solute in liquid water. Moreover, this proximal radial distribution function is sufficient to accurately reconstruct the water oxygen density profile of the oil-water interface. These observations provide an alternative interpretation to collective drying or vaporization interpretations of commonly observed oil-water interfacial profiles for which water penetration into the interfacial region plays a role.  相似文献   

14.
Tomato seed proteins adsorbed at the corn oil-water interface formed, after long ageing times, interfacial films with viscoelastic properties. The viscoelastic parameters of the films, derived by analysis of creep compliance-time curves, were markedly influenced by the aqueous phase protein concentration and showed maxima at a certain concentration which probably corresponded to monolayer saturation coverage. Tomato seed protein film viscoelasticity is greater than that of soybean protein, the parameters of which also show maxima at certain protein concentration. The lowering of pH brings about a decrease in tomato seed protein film viscoelasticity, a fact that could be the result of less molecular unfolding and consequently, less extensive intermolecular hydrophobic interaction.  相似文献   

15.
The slow rate of drop coalescence at 5 C in concentrated corn oil-in-water emulsions stabilised with sodium caseinate, glyceryl monostearate and glyceryl distearate was deduced from changes in the drop size distribution. Both pH and the monoglyceride/diglyceride ratio influenced coalescence. At any pH minimum coalescence was observed at a 5/2 monoglyceride/diglyceride ratio. This was attributed to association of caseinate with a previously formed complex of monoglyceride and diglyceride, so supporting an interpretation previously proposed on the basis of rheological data for the emulsions and for films of caseinate-glycerides at the oil-water interface.  相似文献   

16.
Previous work has demonstrated that semifluorinated alkanes CnF2n+1CmH2m+1 (FnHm diblocks), when used in conjunction with phospholipids, strongly stabilize fluorocarbon (FC)-in-water emulsions destined to be used as oxygen carriers. Although the presence of FnHm diblocks in the emulsion's interfacial phospholipid film was suggested to account for the observed stabilization, no direct proof of the diblock's location has been provided so far. We now report definite experimental evidence of the diblock's presence at the interfacial film, both on a macroscopic level by investigating the FC/water interface using the pendant drop method and directly on emulsions by monitoring their stability for various phospholipid chain lengths. We first establish that F8H16 has a strong cosurfactant effect with phospholipids [dimyristoylphosphatidylcholine (DMPC), dilaurylphosphatidylcholine (DLPC), dioctanoylphosphatidylcholine (PCL8)] at a perfluorooctyl bromide (PFOB)/water interface, as evidenced by a dramatic F8H16-concentration-dependent decrease of the interfacial tension. Where FC emulsions are concerned, we show that the stabilization effect, which consists of a decrease of the rate of molecular diffusion of the FC, depends strongly on the length of the phospholipid's fatty chain as compared to the length of the hydrocarbon segment, Hm, of the diblock. Stabilization is maximized when the Hm length is similar to that of the phospholipid's fatty chains. A strong mismatch between Hm and the phospholipid chain length can actually destabilize the emulsion. A different destabilization mechanism is then at work: coalescence. The presence of F8H16 at the interfacial film is further supported by the fact that perfluorodecyl bromide, a heavy analogue of PFOB that stabilizes PFOB emulsions by lowering the solubility and diffusibility of the emulsion's dispersed FC phase, exercises its stabilizing effect similarly for all the phospholipids investigated.  相似文献   

17.
The solution behaviors of equimolar mixtures of cationic-anionic surfactants have been studied by means of the dynamic light scattering technique and surface tension measurements. The surface activity and the micellization properties are different for systems of different hydrophobic chain length symmetry. For systems of lower symmetry (e.g., C6H13NC5H5Br-C12H25SO4Na mixture), the surface tension at cmc (γcmc) is rather high (above 30 mN m−1) and the mixtures form genuinely homogeneous micellar solutions above the cmc. For the systems of high symmetry (e.g., C8H17NC5H5Br-C8H17SO4Na mixture), γcmc is very low (about 24 mN m−1, near the value of pure hydrocarbon) and in the apparently homogeneous and clear mixtures slightly above cmc, the aggregates grow slowly and eventually form small droplets; as the concentration is further increased, all these solutions become turbid. We have proposed a new concept of conformation energy of aggregates to account for all these phenomena. Mixtures of octyltriethylammonium bromide and sodium octylsulfate form clear homogeneous micellar solutions in keeping with predictions based upon this concept.  相似文献   

18.
The frequencies of several vibrational bands of pyridine, pyrazine, p-nitroso dimethylaniline and cyanide adsorbed on a silver electrode have been investigated as a function of the electrode potential using in situ Raman spectroscopy. The frequencies of all the bands investigated were found to decrease linearly with cathodic potential. This observation is independent of the adsorbate and the anions of the supporting electrolyte. Several models explaining this effect are discussed.  相似文献   

19.
It is well-known that the amphiphilic solutes are surface-active and can accumulate at the oil-water interface. Here, we have investigated the water and a light-oil model interface by using molecular dynamic simulations. It was found that aromatics concentrated in the interfacial region, whereas the other hydrocarbons were uniformly distributed throughout the oil phase. Similar to previous studies, such concentrations were not observed at pure aromatics-water interfaces. We show that the self-accumulation of aromatics at the oil-water interface is driven by differences in the interfacial tension, which is lower for aromatics-water than between the others. The weak hydrogen bonding between the aromatic rings and the water protons provides the mechanism for lowering the interfacial tension.  相似文献   

20.
Polydimethylsiloxane nanoparticles were obtained by nanoprecipitation, using a siloxane surfactant as stabilizer. Two neural networks and a genetic algorithm were used to optimize this process, by minimizing the particle diameter and the polydispersity, finding in this way the optimum values for surfactant and polymer concentrations, and storage temperature. In order to improve the performance of the non-dominated sorting genetic algorithm, NSGA-II, a genetic operator was introduced in this study — the transposition operator — “real jumping genes”, resulting NSGA-II-RJG. It was implemented in original software and was applied to the multi-objective optimization of the polymeric nanoparticles synthesis with silicone surfactants. The multi-objective function of the algorithm included two fitness functions. One fitness function was calculated with a neural network modelling the variation of the particle diameter on the surfactant concentration, polymer concentration, and storage temperature, and the other was computed by a neural network modelling the dependence of polydispersity index on surfactant and polymer concentrations. The performance of the software program that implemented NSGA-II-RJG was highlighted by comparing it with the software implementation of NSGA-II. The results obtained from simulations showed that NSGA-II-RJG is able to find non-dominated solutions with a greater diversity and a faster convergence time than NSGA-II.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号