首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The following crystalline, X-ray-characterised heterometallic oligomeric diamides have been prepared in good yield under mild conditions in diethyl ether from the dilithio or disodio derivative of the N,N'-dineopentyl-1,2-diaminobenzene [{N(H)(CH2Bu(t))}2C6H4-1,2] (abbreviated as H2L):[Y(L)(mu-Cl)2Li(OEt2)2]2 (1), [Li(OEt2)2Li(mu2-Cl)4(mu3-Cl)2{Zr(L)}2]2 (2), [Zr(L)2(mu-Cl){Li(OEt2)2}(mu2-Cl)2Zr(L)] (3), [Ce{(mu-L)M}3(OEt2)(1/2)] (3M = Li(1.82)Na(1.18)) (4), [Ce{(mu-L)Na}3(OEt2)] (5) and [Ce{(mu-L)Na}3] (6). Compounds 1-3 were obtained from Li2(L) and YCl3 (the colourless 1) or ZrCl4 (the red 2 and 3), while the red 4 and 5 were isolated from CeCl3 and M2(L) (3M = Li(1.82)Na(1.18)) (4) or Na2(L) (5). Attempted oxidation of 5 with Br2 in hexane yielded the black 6. The ligand is N,N'-chelating to each of the d- or f-block metals in 1-6; and in 4-6 L is also acting as a bridge between Ce and the alkali metal, to which L is thus also chelating.  相似文献   

2.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

3.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

4.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

5.
A number of metal complexes containing one of the following ligands: the 1-azaallyl [N(R)C(Ph)C(H)R]- ([triple bond]L-), the 1,3-diazaallyl([triple bond]LL'-) and the isomeric beta-diketiminate [{N(R)C(Ph)]}2CH]- ( identical with LL-) have been prepared (R = SiMe(3)). These are the crystalline compounds H(LL) (2), Na(LL) (3), [Na(LL)(thf)2] (4), Na(L) (6), [Na(mu-LL')]8 (7), [K(mu-L)(eta6-C6H6)]2 (8), [K(mu-LL')(thf)]2 (9), [K(thf)2(mu-LL)](infinity) (10) and [Ni(LL')2] (11). A new synthesis of Na[C(H)R2] (1) involved Hg[C(H)R2]2 and Na/Hg as reagents. The beta-diketimine 2 was obtained from Li(LL) and cyclopentadiene. Under different conditions compounds 3, 6 and 7 were isolated from 1 and benzonitrile, and compounds 8, 9 and 10 from K[C(H)R2] and PhCN. Complex 11 was derived from [Li(LL')]2 and [NiBr(2)(dme)]. The solution obtained from 1 + 2 PhCN in Et2O at ambient temperature was a mixture (5) of 3 (predominantly) and 7. The 1-azaallyl complex 8 has the ligand bound to the metal as the enamide, and this is also probably (NMR) the case for 6. The molecular structures of the crystalline complexes 7, 8 and 11 are presented; that of 10 was published earlier. Compound 7, a cyclooctamer, is particularly interesting, in that each LL'- ligand is bridging via one of its N atoms to two neighbouring sodium ions and is not only N,N'- but also (eta2-C[=]C)-chelating to one of them.  相似文献   

6.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

7.
2-Aminomethylaniline was converted into the N,N'-bis(pivaloyl) (1) or -bis(trimethylsilyl) (2) derivative, using 2 Bu(t)C(O)Cl or 2 Me(3)SiCl (≡ RCl), respectively, with 2 NEt(3), or for 2 from successively using 2 LiBu(n) and 2 RCl. N,N'-Bis(neopentyl)-2-(aminomethyl)aniline (3) was prepared by LiAlH(4) reduction of 1. From 2 or 3 and 2 LiBu(n), the appropriate dilitiodiamide {2-[{N(Li)R}C(6)H(4){CH(2)N(Li)R}(L)](2) (L absent, 4a; or L = THF, 4b) or the N,N'-bis(neopentyl) analogue (5) of 4a was prepared. Treatment of 4a with 2 Bu(t)NC, 2 (2,6-Me(2)C(6)H(3)NC) or 2 Bu(t)CN (≡ L') furnished the corresponding adduct [2-N{Li(L')R}C(6)H(4){CH(2)N(Li)R}] (4c, 4d or 4e, respectively), whereas 4b with 2 PhCN afforded [2-{N(Li)R}C(6)H(4){CH(2)C(Ph) = NLi(NCPh)}] (6). The dimeric bis(amido)stannylene [Sn{N(R)C(6)H(4)(CH(2)NR)-1,2}](2) (7) was obtained from 4a and [Sn(μ-Cl)NR(2)](2), while the N,N'-bis(neopentyl) analogue 8 of 7 was similarly derived from [Sn(μ-Cl)NR(2)](2) and 5. Reaction of two equivalents of the diamine 2 with Pb(NR(2))(2) yielded 9, the lead homologue of 7. Oxidative addition of sulfur to 7 led to the dimeric bis(diamido)tin sulfide 10. Treatment of 2 successively with 'MgBu(2)' in C(5)H(12) and THF gave [Mg{N(R)C(6)H(4)(CH(2)NR)}(THF)](2) (11a), which by displacement of its THF by an equivalent portion of Bu(t)CN or PhCN produced [Mg{N(R)C(6)H(4)(CH(2)NR)}(CNR')(n)] [R' = Bu(t), n = 1 (11b); R' = Ph, n = 2 (11c)]. The Ca (12), Sr (13) or Ba (14) analogues of the Mg compound 11a were isolated from 2 and either the appropriate compound M(NR(2))(2) (M = Ca, Sr, Ba), or successively 2 LiBu(n) and 2 M(OTos)(2). The new compounds 1-14 were characterized by microanalysis (C, H, N; not for 1, 2, 3, 5), solution NMR spectra, ν(max) (C≡N) (IR for 4c, 4d, 4e, 6, 11b, 11c), selected EI-MS peaks (for 1, 2, 3, 7, 8, 9, 10), and single crystal X-ray diffraction (for 4a, 4b, 11a).  相似文献   

8.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

9.
Tris(pyrazolyl)borate aryldiazenido complexes [RuTpLL'(ArN(2))](BF(4))(2) (1-3) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); Tp = hydridotris(pyrazolyl)borate; L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were prepared by allowing dihydrogen [RuTp(eta(2)-H(2))LL'](+) derivatives to react with aryldiazonium cations. Spectroscopic characterization (IR, (15)N NMR) using the (15)N-labeled derivatives strongly supports the presence of a linear [Ru]-NN-Ar aryldiazenido group. Hydrazine complexes [RuTp(RNHNH(2))LL']BPh(4) (4-6) [R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4); L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were also prepared by reacting the [RuTp(eta(2)-H(2))LL'](+) cation with an excess of hydrazine. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of the [RuTp(CH(3)NHNH(2))[P(OEt)(3)](PPh(3))]BPh(4) (4d) derivative. Tris(pyrazolyl)borate aryldiazene complexes [RuTp(ArN=NH)LL']BPh(4) (7-9) (Ar = C(6)H(5), 4-CH(3)C(6)H(4)) were prepared following three different methods: (i). by allowing hydride species RuHTpLL' to react with aryldiazonium cations in CH(2)Cl(2); (ii). by treating aryldiazenido [RuTpLL'(ArN(2))](BF(4))(2) with LiBHEt(3) in CH(2)Cl(2); (iii). by oxidizing arylhydrazine [RuTp(ArNHNH(2))LL']BPh(4) complexes with Pb(OAc)(4) in CH(2)Cl(2) at -30 degrees C. Methyldiazene complexes [RuTp(CH(3)N=NH)LL']BPh(4) were also prepared by the oxidation of the corresponding methylhydrazine [RuTp(CH(3)NHNH(2))LL']BPh(4) with Pb(OAc)(4).  相似文献   

10.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

11.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

12.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

13.
The acid-base reactions between the rare-earth metal (Ln) tris(ortho-N,N-dimethylaminobenzyl) complexes [Ln(CH2C(H4NMe2-o)3] with one equivalent of the silylene-linked cyclopentadiene-amine ligand (C5Me4H)SiMe2NH(C6H2Me3-2,4,6) afforded the corresponding half-sandwich aminobenzyl complexes [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Ln(CH2C6H4NMe2-o)(thf)] (2-Ln) (Ln=Y, La, Pr, Nd, Sm, Gd, Lu) in 60-87 % isolated yields. The one-pot reaction between ScCl(3) and [Me2Si(C5Me4)(NC6H2Me3-2,4,6)]Li2 followed by reaction with LiCH2C6H4NMe2-o in THF gave the scandium analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Sc(CH2C6H4NMe2-o)] (2-Sc) in 67 % isolated yield. 2-Sc could not be prepared by the acid-base reaction between [Sc(CH2C6H4NMe2-o)3] and (C5Me4H)SiMe2NH(C6H2Me3-2,4,6). These half-sandwich rare-earth metal aminobenzyl complexes can serve as efficient catalyst precursors for the catalytic addition of various phosphine P--H bonds to carbodiimides to form a series of phosphaguanidine derivatives with excellent tolerability to aromatic carbon-halogen bonds. A significant increase in the catalytic activity was observed, as a result of an increase in the metal size with a general trend of La>Pr, Nd>Sm>Gd>Lu>Sc. The reaction of 2-La with 1 equiv of Ph2PH yielded the corresponding phosphide complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)(thf)2] (4), which, on recrystallization from benzene, gave the dimeric analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)]2 (5). Addition of 4 or 5 to iPrN=C=NiPr in THF yielded the phosphaguanidinate complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(thf)] (6), which, on recrystallization from ether, afforded the ether-coordinated structurally characterizable analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(OEt2)] (7). The reaction of 6 or 7 with Ph2PH in THF yielded 4 and the phosphaguanidine iPrN=C(PPh2)NHiPr (3a). These results suggest that the catalytic formation of a phosphaguanidine compound proceeds through the nucleophilic addition of a phosphide species, which is formed by the acid-base reaction between a rare-earth metal o-dimethylaminobenzyl bond and a phosphine P--H bond, to a carbodiimide, followed by the protonolysis of the resultant phosphaguanidinate species by a phosphine P--H bond. Almost all of the rare earth complexes reported this paper were structurally characterized by X-ray diffraction studies.  相似文献   

14.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

15.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

16.
Treatment of 1,2-diphosphinobenzene with [Au(C6F5)3(tht)] leads to the diphosphane derivative [{Au(C6F5)3}(1,2-PH2C6H4PH2)] (1), which further reacts with other pentafluorophenylgold(III) reagents in the presence of acetylacetonate as deprotonating agent to afford phosphane-phosphide complexes. The noncyclic PPN[{Au(C6F5)3}2(1,2-PHC6H4PH2)] (2; PPN = bis(triphenylphosphine)iminium) has been shown to be a useful starting material for the synthesis of higher nuclearity cyclic or noncyclic diphosphide or even diphosphodiide derivatives through similar reactions. The crystal structures of the trinuclear anionic NBu4[{Au(C6F5)3}(1,2-PHC6H4PH){Au(C6F5)2Cl}{mu-Au(C6F5)2}] (3) and the hexanuclear [{Au(C6F5)3}(1,2-PC6H4P){Au(C6F5)3}{mu-M(dppe)M}2] (M = Au (12), Ag (13)) have been established by X-ray diffraction methods, the last complexes having a bicyclic ring containing three intramolecular interactions between the M(I) centres.  相似文献   

17.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

18.
To study the structures and reactivities of alkali metallated intermediates of calix[4]arenes, three compounds were isolated: [Li(4)(p-tert-butylcalix[4]arene-4H)(thf)(4)](2).6 THF (1), [Li(2)(p-tert-butylcalix[4]arene-2H)(H(2)O)(mu-H(2)O)(thf)].3 THF (2), and [K(4)(p-tert-butylcalix[4]arene-4H)(thf)(5)](2).THF (3). The structure of 1 is shown to be dependent on the coordinating solvent. Partial hydrolysis of 1 leads to the formation of 2. The potassium compound 3 features a different structure to that of 1, due to a higher coordination number as well as stronger cation-pi-bonding interactions.  相似文献   

19.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

20.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号