首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new fluorine-containing poly(aryl ether ketone)s (8F-PEKEK(Ar); Ar: 2-2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA), 2,2-bis(4-hydroxyphenyl)propane (BA), 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane (3,4-BA) or 9,9-bis(4-hydroxyphenyl)fluorine (HF)) are synthesized and applied to the matrix of optical oxygen sensing using phosphorescence quenching of metalloporphyrins, platinum and palladium octaethylporphyrin, (PtOEP and PdOEP) by oxygen. The phosphorescence intensity of PtOEP and PdOEP in 8F-PEKEK(Ar) films decreased with increase of oxygen concentration. The ratio I0/I100 is used as a sensitivity of the sensing film, where I0 and I100 represent the detected phosphorescence intensities from a film exposed to 100% argon and 100% oxygen, respectively. For PtOEP in 8F-PEKEK(Ar) film, I0/I100 values are more than 20.0 and large Stern-Volmer constants more than 0.19%−1 are obtained compared with PtOEP in polystyrene film. For PdOEP in 8F-PEKEK(Ar) film, on the other hand, the large I0/I100 values more than 143 are obtained. However, the Stern-Volmer plots of PdOEP in 8F-PEKEK(Ar) films exhibit considerable linearity at lower oxygen concentration range between 0% and 20%. These results indicate that PtOEP and PdOEP films are useful optical oxygen sensor at the oxygen concentration range between 0% and 100% and between 0% and 20%, respectively. The response times of PtOEP and PdOEP dispersed in 8F-PEKEK(Ar) films are 5.6 and 3.0 s on going from argon to oxygen and 110.1 and 160.0 s from oxygen to argon, respectively.  相似文献   

2.
This paper presents a highly sensitive oxygen sensor that comprises an optical fiber coated at one end with platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) and PtTFPP entrapped core-shell silica nanoparticles embedded in an n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio I0/I100, where I0 and I100 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results show that the oxygen sensor has a sensitivity (I0/I100) of 166. The response time was 1.3 s when switching from pure nitrogen to pure oxygen, and 18.6 s when switching in the reverse direction. The experimental results show that compared to oxygen sensors based on PtTFPP, PtOEP, or Ru(dpp)32+ dyes, the proposed optical fiber oxygen sensor has the highest sensitivity. In addition to the increased surface area per unit mass of the sensing surface, the dye entrapped in the core of silica nanoparticles also increases the sensitivity because a substantial number of aerial oxygen molecules penetrate the porous silica shell. The dye entrapped core-shell nanoparticles is more prone to oxygen quenching.  相似文献   

3.
Novel optical sensing films for oxygen based on highly luminescent iridium (III) and ruthenium (II) complexes have been developed. These demonstrate excellent long-term photostability (several months) when incorporated into polystyrene membranes. The influence of different plasticizers on the specific luminescence quantum yield, the Stern-Volmer constant, the reversibility and the response time were evaluated. Additionally the sensing films can be sterilized by chemical cleaning and gamma-ray irradiation.  相似文献   

4.
In this article, an emission based, simple and fast method is proposed for the determination of gaseous oxygen. A newly synthesized fluorophore, dichloro-{2,6-bis[1-(4-dimethylamino-phenylimino) ethyl]pyridine}ruthenium(II) has been used for oxygen sensing together with oxygen carrier perfluorochemicals (PFCs) in silicon matrix. It should be noted that the solubility of oxygen in fluorocarbons is about three to ten times large as that observed in the parent hydrocarbons or in water, respectively. Employed PFCs are chemically and biochemically inert, have high dissolution capacities for oxygen, and, once doped into sensing film, considerably enhance the response of sensing agent.  相似文献   

5.
Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < −76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases.  相似文献   

6.
A fiber optic sensor has been used for real-time measurement of the migration rates of all the compounds in a mixture separated by gas chromatography. The sensor makes use of a coated capillary optical fiber as the column. This new type of waveguide consists in a polarization-maintaining optical core positioned close to the capillary edge along the entire fiber length. The optical detection is performed through the coupling of the two polarization modes of the waveguide and this coupling is detected by a polarimetric interferometry technique. Through some signal processing, the resulting interferogram provides the migration rates of the various compounds of a gas mixture flowing in the capillary. One of the major benefits of this optical migration rate sensing is that the detection of each velocity peak appears as soon as the analyte enters the capillary fiber and the peaks are constantly measured during the whole separation process. Carrier gas acceleration occurring in the column is plainly demonstrated. This paper presents a proof-of-concept on a qualitative basis. The experiments were done at 29 °C because the current opto-fluidic set-up cannot withstand a higher temperature.  相似文献   

7.
光学薄膜氧气传感器研究进展   总被引:2,自引:0,他引:2  
光学薄膜氧气传感器具有检测精度高、选择性好、抗干扰能力强等优点,近年来日益得到人们的广泛重视,研究工作也在不断深化和拓展,展现出十分广阔的应用前景。本文按光学薄膜氧气传感器的制备方法分类扼要综述了光学薄膜氧气传感器的研究现状,并展望了其研究前景。  相似文献   

8.
The main objective of this study was to develop a simple, energy-efficient photoreactor for operating at room temperature. In this work, the design of a new gas-phase optical fiber photoreactor (OFP) was introduced which operated under various parameters, such as the UV light intensity and the initial concentration for the photocatalytic decomposition of acetone. Experimental results indicated that increasing the UV light intensity or decreasing the initial concentrations of acetone by a UV/TiO2 process would result in improving the decomposition and mineralization efficiencies. The apparent quantum yield of the novel optical fiber reactor is about 2 to 3 times greater than that of the traditional annular reactor.  相似文献   

9.
A robust optical composite thin film dissolved oxygen sensor was fabricated by ionically trapping the dye ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) dichloride in a blended fluoropolymer matrix consisting of Nafion® and Aflas®. Strong phosphorescence, which was strongly quenched by dissolved oxygen (DO), was observed when the sensor was immersed in water. The sensor was robust, optically transparent, with good mechanical properties. Fast response, of a few seconds, coupled with sensitivity of about 0.1 mg L−1 (DO) over the range 0-30 mg L−1 and resistance to leaching, were also exhibited by this system. The Stern-Volmer (SV) plot exhibited slight downward turning at all oxygen concentrations. A linear plot was obtained when the SV equation was modified to account for the varying sensitivity of dye molecules in the matrix to the quencher. Good long term stability was observed.  相似文献   

10.
The preparation and analysis of the oxygen mass fraction of three pure copper reference materials (BAM-379/1, BAM-379/2, BAM-379/3) intended for the calibration of spark emission spectrometry are described here. Data of homogeneity testing and round robin certification in collaboration with 12 independent laboratories from metalworking industry and research are reported. Problems with the establishment of traceability in this special case are discussed. Received: 20 July 2001 Accepted: 13 October 2001  相似文献   

11.
In this work we have proposed a method for the detection of alcohol vapours, i.e. methanol, ethanol and isopropanol, based on the optical sensing response of magnesium 5,10,15,20-tetraphenyl porphyrin (MgTPP) thin films, as measured by optical spectrometry with the assistance of chemometric analysis. We have implemented a scheme which allows a laboratory UV–vis spectrometer to act as a so-called “electronic nose” with very little modification. MgTPP thin films were prepared by a spin coating technique, using chloroform as the solvent, and then subjected to thermal annealing at 280 °C in an argon atmosphere. These MgTPP optical gas sensors presented significant responses with methanol compared to ethanol and isopropanol, based on the dynamic flow of alcohol vapours at the same mol% of alcohol concentration. Density functional theory (DFT) calculations were performed to model the underlying mechanism of this selectivity. The performance of the optical gas sensors was optimised by varying the fabrication parameters. It is hoped that the MgTPP thin film together with an off-the-shelf optical spectrometer and a simple chemometrics algorithm can be a valuable tool for the analysis of alcoholic content in the beverage industry.  相似文献   

12.
Cross-linked poly(vinyl alcohol) (PVA)-silica gel copolymer has been employed as a optical pH sensor substrate for immobilisation of fluorescein. Cross-linking was carried out by the sol-gel process incorporating PVA in initial sol-gel solution of tetra-methoxysilane (TMOS) under acidic conditions. Three dimensional network formation could be achieved using compositions of PVA/TMOS=80-90/20-10 vol.% to result in crack-free films. The fluorescent sensor layers were prepared by dip-coating of gel solution onto glass slides. The dynamic fluorescence response towards different pH values was investigated in terms of the influence of sample ionic strength, membrane composition as well as age of sol-gel layers. Depending on the composition of the matrix pKa values of 6.50, 6.68 and 7.06 were found 18 days after continues storage in buffer.  相似文献   

13.
A procedure for the estimation of measurement uncertainty of dissolved oxygen (DO) concentration measurement based on the ISO approach is presented. It is based on a mathematical model that involves 14 input parameters. The uncertainty of DO concentration strongly depends on changes in experimental details (temperature difference between calibration and measurement, the time interval between calibration and measurement, etc.). The relative measurement uncertainty is, however, practically independent of the DO concentration itself. The uncertainty is the lowest if the calibration and the measurement are done at the same temperature and on the same day. A calculation tool is provided (in the form of a GUM Workbench file) for practitioners that can be used for uncertainty calculation of DO concentrations at very different experimental conditions.Electronic Supplementary Material The uncertainty calculation example is available as a GUM Workbench calculation file C_O2_meas.smu (GUM Workbench ver. 1.3.3, Metrodata GmbH) together with its data file Input_values.xls (MS Excel 97). For those users who do not have GUM Workbench, the full report of the GUM Workbench calculation is available as a PDF file C_O2_meas.pdf. This material is available via the Internet at .  相似文献   

14.
Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.  相似文献   

15.
用热聚法固定指示剂的光纤氧气传感器研究   总被引:5,自引:0,他引:5  
姜德生  陈兴  黄俊 《化学学报》2003,61(8):1281-1286
采用热聚法将甲叉双丙烯酰胺(MBBA)聚合并共价交联在硅烷化的玻璃微珠上 ,同时将指示剂Ru(Ⅱ)-邻啡咯啉配合物物理包埋于聚合物中,研制了一种基于 荧光猝灭原理的光纤氧气传感器,采用NaHSO_3-O_2-MnSO_4体系引发MBBA水溶液热 聚合后应,通过确定NaHSO_3,MnSO_4,MBBA和Ru(phen)_3Cl_2的最佳反应浓度以及 玻璃微珠的尺寸,优化了聚合反应条件,改善了指示剂的固定效果,制备了性能较 好的传感器探头,该传感器的检测下限为5×10~(-6)(V/V),响应时间为10s该传感 器连续工作50min,重复性标准偏差为±1%。  相似文献   

16.
The dye Erythrosine B (which gives room-temperature phosphorescence, RTF) has been covalently bound to a silica-based amino-functionalized exchanger. The resulting material turned out to be extremely useful as a luminescent probe for oxygen. The photochemical properties and the analytical performance of the RTF probe have been studied by use of a gas flow-injection analysis system, which incorporates a convenient exponential dilution chamber for gas sample introduction. The possible origin of the non-linear Stern-Volmer quenching response observed is thoroughly discussed in terms of the quenching and lifetimes. The proposed sensing material is particularly suitable for measuring oxygen in gas mixtures at extremely low concentrations. The detection limit attained was 0.00006% (0.6 ppm) of oxygen in dry argon (making the system one of the more sensitive optosensors for oxygen published so far). A typical precision of ± 0.2%, at the 0.025% oxygen level, was achieved. Response times were less than 2 s for full signal change and no hysteresis effects were noticed. A possible mechanism for the observed oxygen RTF quenching in the new sensing material is proposed.  相似文献   

17.
Abd-Rabboh HS  Meyerhoff ME 《Talanta》2007,72(3):1129-1133
The determination of glucose in beverages is demonstrated using newly developed fluoride selective optical sensing polymeric film that contains aluminum (III) octaethylporphyrin (Al[OEP]) ionophore and the chromoionophore ETH7075 cast at the bottom of wells of a 96-well polypropylene microtiter plate. The method uses a dual enzymatic reaction involving glucose oxidase enzyme (GOD) and horseradish peroxidase (HRP), along with an organofluoro-substrate (4-fluorophenol) as the source of fluoride ions. The concentration of fluoride ions after enzymatic reaction is directly proportional to the glucose level in the sample. The method has a detection limit of 0.8 mmol L−1, a linear range of 0.9-40 mmol L−1 and a sensitivity of 0.125 absorbance/decade of glucose concentration. Glucose levels in several beverage samples determined using the proposed method correlate well with a reference spectrophotometric enzyme method based on detection of hydrogen peroxide using bromopyrogallol red dye (BPR). The new method can also be used to determine H2O2 concentrations in the 0.1-50 mmol L−1 range using a single enzymatic reaction involving H2O2 oxidation of 4-fluorophenol catalyzed by HRP. The methodology could potentially be used to detect a wide range of substrates for which selective oxidase enzymes exist (to generate H2O2), with the high throughput of simple microtiter plate detection scheme.  相似文献   

18.
We present an optical sensor for the detection of aqueous amines obtained by incorporating chromoionophore XV (ETHT 4001) into sol-gel thin films. Acid- and base-catalyzed sol-gel processes were studied to prepare stable ormosil layers using various amounts of organically modified sol-gel precursor such as methyltriethoxysilane (MTriEOS). The sensor layers were coated with a protective layer of microporous white polytetrafluoroethylene (PTFE) in order to prevent interference from ions and ambient light. The measurements were carried out in a flow-through cell in the reflection mode. Acid-catalyzed ormosil layers (pH 1) based on the copolymerization of tetraethoxysilane (TEOS) and MTriEOS did not show any change in signal upon exposure to aqueous amine solutions, while base-catalyzed sensor layers (pH 3 and 13) showed significant changes in signal. The response time (t 100) for the base-catalyzed sensor layer L3 (pH 13) upon exposure to different solutions containing 0–608 mmol L−1 aqueous propylamine was 20–30 s, the regeneration time was 70 s and the detection limit was 0.1 mmol L−1. The sensor response was reproducible and reversible. The porous ormosil layers permit dry sensor storage conditions.  相似文献   

19.
This research was focused on the preparation of mixed metal oxide pigments doped with terbium ions with the general formula of Sn0.752Co0.08P0.16Tb0.008O2. These pigments were synthesised by solid-state reactions at high calcination temperatures. The temperature range was chosen from 1350 to 1500 °C. The goal was to develop conditions for the synthesis of this type of pigments and to determine the influence of terbium ions on the colour properties of these compounds. All prepared pigments were applied into the organic matrix and into the ceramic glaze. Thermal behaviours of the reaction mixtures were investigated using differential thermal and thermogravimetric analysis. Synthesised Sn0.752Co0.08P0.16Tb0.008O2 pigments were compared with concurrently prepared pigment Sn0.760Co0.08P0.16O2 depending on the calcination temperature with respect to the colour properties in CIE L*a*b* colour space, furthermore from the point of particle size distribution and phase composition. All compounds provided blue–violet hues that are stable in ceramic glazes.  相似文献   

20.
Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co2+ concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO3)2, possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L−1. The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号